Kalbe-x-Bangkit commited on
Commit
4ae5d2b
1 Parent(s): 0296c3c

Update app-gradcam.py

Browse files
Files changed (1) hide show
  1. app-gradcam.py +70 -70
app-gradcam.py CHANGED
@@ -1,71 +1,71 @@
1
- import streamlit as st
2
- import tensorflow as tf
3
- import numpy as np
4
- import pandas as pd
5
- import matplotlib.pyplot as plt
6
- import cv2
7
- from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
8
-
9
- class GradCAM(object):
10
-
11
- def __init__(self, model, alpha=0.8, beta=0.3):
12
- self.model = model
13
- self.alpha = alpha
14
- self.beta = beta
15
-
16
- def apply_heatmap(self, heatmap, image):
17
- heatmap = cv2.resize(heatmap, image.shape[:-1])
18
- heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
19
- superimposed_img = cv2.addWeighted(np.array(image).astype(np.float32), self.alpha,
20
- np.array(heatmap).astype(np.float32), self.beta, 0)
21
- return np.array(superimposed_img).astype(np.uint8)
22
-
23
- def gradCAM(self, x_test=None, name='block5_conv3', index_class=0):
24
- with tf.GradientTape() as tape:
25
- last_conv_layer = self.model.get_layer(name)
26
- grad_model = tf.keras.Model([self.model.input], [self.model.output, last_conv_layer.output])
27
- model_out, last_conv_layer = grad_model(np.expand_dims(x_test, axis=0))
28
- class_out = model_out[:, index_class]
29
- grads = tape.gradient(class_out, last_conv_layer)
30
- pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
31
- last_conv_layer = last_conv_layer[0]
32
- heatmap = last_conv_layer @ pooled_grads[..., tf.newaxis]
33
- heatmap = tf.squeeze(heatmap)
34
- heatmap = np.maximum(heatmap, 0)
35
- heatmap /= np.max(heatmap)
36
- heatmap = np.array(heatmap)
37
- return self.apply_heatmap(heatmap, x_test)
38
-
39
- # Streamlit app
40
- st.title("Grad-CAM Visualization")
41
-
42
- uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
43
-
44
- if uploaded_file is not None:
45
- try:
46
- # Load the uploaded image
47
- file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
48
- img = cv2.imdecode(file_bytes, 1)
49
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
50
-
51
- st.image(img, caption='Uploaded Image.', use_column_width=True)
52
-
53
- # Preprocess the image for the model (assuming the model expects 224x224 images)
54
- img_resized = cv2.resize(img, (224, 224))
55
- img_array = np.expand_dims(img_resized, axis=0)
56
-
57
- # Load the model
58
- model_path = './model/model_renamed.h5' # Update this path to your model's path
59
- model = tf.keras.models.load_model(model_path)
60
-
61
- # Initialize GradCAM
62
- grad_cam = GradCAM(model)
63
-
64
- # Compute GradCAM heatmap
65
- heatmap_img = grad_cam.gradCAM(img_array[0])
66
-
67
- # Display the GradCAM heatmap
68
- st.image(heatmap_img, caption='Grad-CAM Heatmap.', use_column_width=True)
69
-
70
- except Exception as e:
71
  st.error(f"Error: {e}")
 
1
+ import streamlit as st
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ import pandas as pd
5
+ import matplotlib.pyplot as plt
6
+ import cv2
7
+ from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
8
+
9
+ class GradCAM(object):
10
+
11
+ def __init__(self, model, alpha=0.8, beta=0.3):
12
+ self.model = model
13
+ self.alpha = alpha
14
+ self.beta = beta
15
+
16
+ def apply_heatmap(self, heatmap, image):
17
+ heatmap = cv2.resize(heatmap, image.shape[:-1])
18
+ heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
19
+ superimposed_img = cv2.addWeighted(np.array(image).astype(np.float32), self.alpha,
20
+ np.array(heatmap).astype(np.float32), self.beta, 0)
21
+ return np.array(superimposed_img).astype(np.uint8)
22
+
23
+ def gradCAM(self, x_test=None, name='block5_conv3', index_class=0):
24
+ with tf.GradientTape() as tape:
25
+ last_conv_layer = self.model.get_layer(name)
26
+ grad_model = tf.keras.Model([self.model.input], [self.model.output, last_conv_layer.output])
27
+ model_out, last_conv_layer = grad_model(np.expand_dims(x_test, axis=0))
28
+ class_out = model_out[:, index_class]
29
+ grads = tape.gradient(class_out, last_conv_layer)
30
+ pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
31
+ last_conv_layer = last_conv_layer[0]
32
+ heatmap = last_conv_layer @ pooled_grads[..., tf.newaxis]
33
+ heatmap = tf.squeeze(heatmap)
34
+ heatmap = np.maximum(heatmap, 0)
35
+ heatmap /= np.max(heatmap)
36
+ heatmap = np.array(heatmap)
37
+ return self.apply_heatmap(heatmap, x_test)
38
+
39
+ # Streamlit app
40
+ st.title("Grad-CAM Visualization")
41
+
42
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
43
+
44
+ if uploaded_file is not None:
45
+ try:
46
+ # Load the uploaded image
47
+ file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
48
+ img = cv2.imdecode(file_bytes, 1)
49
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
50
+
51
+ st.image(img, caption='Uploaded Image.', use_column_width=True)
52
+
53
+ # Preprocess the image for the model (assuming the model expects 224x224 images)
54
+ img_resized = cv2.resize(img, (224, 224))
55
+ img_array = np.expand_dims(img_resized, axis=0)
56
+
57
+ # Load the model
58
+ model_path = 'model_renamed.h5' # Update this path to your model's path
59
+ model = tf.keras.models.load_model(model_path)
60
+
61
+ # Initialize GradCAM
62
+ grad_cam = GradCAM(model)
63
+
64
+ # Compute GradCAM heatmap
65
+ heatmap_img = grad_cam.gradCAM(img_array[0])
66
+
67
+ # Display the GradCAM heatmap
68
+ st.image(heatmap_img, caption='Grad-CAM Heatmap.', use_column_width=True)
69
+
70
+ except Exception as e:
71
  st.error(f"Error: {e}")