|
import streamlit as st
|
|
import tensorflow as tf
|
|
import numpy as np
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
import cv2
|
|
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
|
|
|
|
class GradCAM(object):
|
|
|
|
def __init__(self, model, alpha=0.8, beta=0.3):
|
|
self.model = model
|
|
self.alpha = alpha
|
|
self.beta = beta
|
|
|
|
def apply_heatmap(self, heatmap, image):
|
|
heatmap = cv2.resize(heatmap, image.shape[:-1])
|
|
heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
|
|
superimposed_img = cv2.addWeighted(np.array(image).astype(np.float32), self.alpha,
|
|
np.array(heatmap).astype(np.float32), self.beta, 0)
|
|
return np.array(superimposed_img).astype(np.uint8)
|
|
|
|
def gradCAM(self, x_test=None, name='block5_conv3', index_class=0):
|
|
with tf.GradientTape() as tape:
|
|
last_conv_layer = self.model.get_layer(name)
|
|
grad_model = tf.keras.Model([self.model.input], [self.model.output, last_conv_layer.output])
|
|
model_out, last_conv_layer = grad_model(np.expand_dims(x_test, axis=0))
|
|
class_out = model_out[:, index_class]
|
|
grads = tape.gradient(class_out, last_conv_layer)
|
|
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
|
|
last_conv_layer = last_conv_layer[0]
|
|
heatmap = last_conv_layer @ pooled_grads[..., tf.newaxis]
|
|
heatmap = tf.squeeze(heatmap)
|
|
heatmap = np.maximum(heatmap, 0)
|
|
heatmap /= np.max(heatmap)
|
|
heatmap = np.array(heatmap)
|
|
return self.apply_heatmap(heatmap, x_test)
|
|
|
|
|
|
st.title("Grad-CAM Visualization")
|
|
|
|
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
|
|
|
if uploaded_file is not None:
|
|
try:
|
|
|
|
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
|
img = cv2.imdecode(file_bytes, 1)
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
|
|
st.image(img, caption='Uploaded Image.', use_column_width=True)
|
|
|
|
|
|
img_resized = cv2.resize(img, (224, 224))
|
|
img_array = np.expand_dims(img_resized, axis=0)
|
|
|
|
|
|
model_path = './model/model_renamed.h5'
|
|
model = tf.keras.models.load_model(model_path)
|
|
|
|
|
|
grad_cam = GradCAM(model)
|
|
|
|
|
|
heatmap_img = grad_cam.gradCAM(img_array[0])
|
|
|
|
|
|
st.image(heatmap_img, caption='Grad-CAM Heatmap.', use_column_width=True)
|
|
|
|
except Exception as e:
|
|
st.error(f"Error: {e}") |