Cloud-PACS-AI-Integration / app-gradcam.py
Kalbe-x-Bangkit's picture
Add app-gradcam and their model
0296c3c verified
raw
history blame
2.94 kB
import streamlit as st
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import cv2
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
class GradCAM(object):
def __init__(self, model, alpha=0.8, beta=0.3):
self.model = model
self.alpha = alpha
self.beta = beta
def apply_heatmap(self, heatmap, image):
heatmap = cv2.resize(heatmap, image.shape[:-1])
heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
superimposed_img = cv2.addWeighted(np.array(image).astype(np.float32), self.alpha,
np.array(heatmap).astype(np.float32), self.beta, 0)
return np.array(superimposed_img).astype(np.uint8)
def gradCAM(self, x_test=None, name='block5_conv3', index_class=0):
with tf.GradientTape() as tape:
last_conv_layer = self.model.get_layer(name)
grad_model = tf.keras.Model([self.model.input], [self.model.output, last_conv_layer.output])
model_out, last_conv_layer = grad_model(np.expand_dims(x_test, axis=0))
class_out = model_out[:, index_class]
grads = tape.gradient(class_out, last_conv_layer)
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
last_conv_layer = last_conv_layer[0]
heatmap = last_conv_layer @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap)
heatmap = np.maximum(heatmap, 0)
heatmap /= np.max(heatmap)
heatmap = np.array(heatmap)
return self.apply_heatmap(heatmap, x_test)
# Streamlit app
st.title("Grad-CAM Visualization")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
try:
# Load the uploaded image
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
img = cv2.imdecode(file_bytes, 1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
st.image(img, caption='Uploaded Image.', use_column_width=True)
# Preprocess the image for the model (assuming the model expects 224x224 images)
img_resized = cv2.resize(img, (224, 224))
img_array = np.expand_dims(img_resized, axis=0)
# Load the model
model_path = './model/model_renamed.h5' # Update this path to your model's path
model = tf.keras.models.load_model(model_path)
# Initialize GradCAM
grad_cam = GradCAM(model)
# Compute GradCAM heatmap
heatmap_img = grad_cam.gradCAM(img_array[0])
# Display the GradCAM heatmap
st.image(heatmap_img, caption='Grad-CAM Heatmap.', use_column_width=True)
except Exception as e:
st.error(f"Error: {e}")