Spaces:
Build error
Build error
Update app.py
Browse fileschange model to IDEFICS2 MedVQA
app.py
CHANGED
@@ -1,5 +1,13 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Project description
|
5 |
description = """
|
@@ -14,9 +22,8 @@ The model is trained using the [Hugging face](https://huggingface.co/datasets/fl
|
|
14 |
Reference: [ScienceDirect](https://www.sciencedirect.com/science/article/abs/pii/S0933365723001252)
|
15 |
|
16 |
## Model Architecture
|
17 |
-
The model uses a Parameterized Hypercomplex Shared Encoder network (PHYSEnet).
|
18 |
|
19 |
-

|
22 |
|
@@ -24,19 +31,87 @@ Reference: [ScienceDirect](https://www.sciencedirect.com/science/article/abs/pii
|
|
24 |
Please select the example below or upload 4 pairs of mammography exam results.
|
25 |
"""
|
26 |
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def format_answer(image, question, history):
|
31 |
try:
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
except Exception as e:
|
|
|
|
|
38 |
return f"Error: {str(e)}", history
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def switch_theme(mode):
|
41 |
if mode == "Light Mode":
|
42 |
return gr.themes.Default()
|
@@ -60,9 +135,9 @@ with gr.Blocks(
|
|
60 |
secondary_hue=gr.themes.colors.red,
|
61 |
)
|
62 |
) as VisualQAApp:
|
63 |
-
gr.Markdown(description, elem_classes="
|
64 |
|
65 |
-
gr.Markdown("
|
66 |
|
67 |
with gr.Row():
|
68 |
with gr.Column():
|
@@ -82,6 +157,29 @@ with gr.Blocks(
|
|
82 |
show_progress=True
|
83 |
)
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
with gr.Row():
|
86 |
history_gallery = gr.Gallery(label="History Log", elem_id="history_log")
|
87 |
submit_button.click(
|
@@ -117,4 +215,4 @@ with gr.Blocks(
|
|
117 |
outputs=[feedback_input]
|
118 |
)
|
119 |
|
120 |
-
VisualQAApp.launch(share=True)
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
from PIL import Image
|
4 |
+
import io
|
5 |
import gradio as gr
|
6 |
+
from transformers import AutoProcessor, TextIteratorStreamer
|
7 |
+
from transformers import Idefics2ForConditionalGeneration
|
8 |
+
import torch
|
9 |
+
from peft import LoraConfig
|
10 |
+
from transformers import AutoProcessor, BitsAndBytesConfig, IdeficsForVisionText2Text
|
11 |
|
12 |
# Project description
|
13 |
description = """
|
|
|
22 |
Reference: [ScienceDirect](https://www.sciencedirect.com/science/article/abs/pii/S0933365723001252)
|
23 |
|
24 |
## Model Architecture
|
|
|
25 |
|
26 |
+

|
27 |
|
28 |
Reference: [ScienceDirect](https://www.sciencedirect.com/science/article/abs/pii/S0933365723001252)
|
29 |
|
|
|
31 |
Please select the example below or upload 4 pairs of mammography exam results.
|
32 |
"""
|
33 |
|
34 |
+
DEVICE = torch.device("cuda")
|
35 |
+
|
36 |
+
USE_LORA = False
|
37 |
+
USE_QLORA = True
|
38 |
+
|
39 |
+
if USE_QLORA or USE_LORA:
|
40 |
+
lora_config = LoraConfig(
|
41 |
+
r=8,
|
42 |
+
lora_alpha=8,
|
43 |
+
lora_dropout=0.1,
|
44 |
+
target_modules='.*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$',
|
45 |
+
use_dora=False if USE_QLORA else True,
|
46 |
+
init_lora_weights="gaussian"
|
47 |
+
)
|
48 |
+
if USE_QLORA:
|
49 |
+
bnb_config = BitsAndBytesConfig(
|
50 |
+
load_in_4bit=True,
|
51 |
+
bnb_4bit_quant_type="nf4",
|
52 |
+
bnb_4bit_compute_dtype=torch.float16
|
53 |
+
)
|
54 |
+
|
55 |
+
model = Idefics2ForConditionalGeneration.from_pretrained(
|
56 |
+
# "jihadzakki/idefics2-8b-vqarad-delta",
|
57 |
+
torch_dtype=torch.float16,
|
58 |
+
quantization_config=bnb_config
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
processor = AutoProcessor.from_pretrained(
|
63 |
+
"HuggingFaceM4/idefics2-8b",
|
64 |
+
)
|
65 |
|
66 |
def format_answer(image, question, history):
|
67 |
try:
|
68 |
+
messages = [
|
69 |
+
{
|
70 |
+
"role": "user",
|
71 |
+
"content": [
|
72 |
+
{"type": "image"},
|
73 |
+
{"type": "text", "text": question}
|
74 |
+
]
|
75 |
+
}
|
76 |
+
]
|
77 |
+
|
78 |
+
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
79 |
+
inputs = processor(text=[text.strip()], images=[image], return_tensors="pt", padding=True)
|
80 |
+
inputs = {key: value.to(DEVICE) for key, value in inputs.items()}
|
81 |
+
generated_ids = model.generate(**inputs, max_new_tokens=64)
|
82 |
+
generated_texts = processor.batch_decode(generated_ids[:, inputs["input_ids"].size(1):], skip_special_tokens=True)[0]
|
83 |
+
|
84 |
+
history.append((image, f"Question: {question} | Answer: {generated_texts}"))
|
85 |
+
|
86 |
+
# Store the predicted answer in a variable before deleting intermediate variables
|
87 |
+
predicted_answer = f"Predicted Answer: {generated_texts}"
|
88 |
+
|
89 |
+
# Clear the cache and delete unnecessary variables
|
90 |
+
del inputs
|
91 |
+
del generated_ids
|
92 |
+
del generated_texts
|
93 |
+
torch.cuda.empty_cache()
|
94 |
+
|
95 |
+
return predicted_answer, history
|
96 |
except Exception as e:
|
97 |
+
# Clear the cache in case of an error
|
98 |
+
torch.cuda.empty_cache()
|
99 |
return f"Error: {str(e)}", history
|
100 |
|
101 |
+
def clear_history():
|
102 |
+
return "", []
|
103 |
+
|
104 |
+
def undo_last(history):
|
105 |
+
if history:
|
106 |
+
history.pop()
|
107 |
+
return "", history
|
108 |
+
|
109 |
+
def retry_last(image, question, history):
|
110 |
+
if history:
|
111 |
+
last_image, last_entry = history[-1]
|
112 |
+
return format_answer(last_image, question, history[:-1])
|
113 |
+
return "No previous analysis to retry.", history
|
114 |
+
|
115 |
def switch_theme(mode):
|
116 |
if mode == "Light Mode":
|
117 |
return gr.themes.Default()
|
|
|
135 |
secondary_hue=gr.themes.colors.red,
|
136 |
)
|
137 |
) as VisualQAApp:
|
138 |
+
gr.Markdown(description, elem_classes="title") # Display the project description
|
139 |
|
140 |
+
gr.Markdown("## Demo")
|
141 |
|
142 |
with gr.Row():
|
143 |
with gr.Column():
|
|
|
157 |
show_progress=True
|
158 |
)
|
159 |
|
160 |
+
with gr.Row():
|
161 |
+
retry_button = gr.Button("Retry")
|
162 |
+
undo_button = gr.Button("Undo")
|
163 |
+
clear_button = gr.Button("Clear")
|
164 |
+
|
165 |
+
retry_button.click(
|
166 |
+
retry_last,
|
167 |
+
inputs=[image_input, question_input, history_state],
|
168 |
+
outputs=[answer_output, history_state]
|
169 |
+
)
|
170 |
+
|
171 |
+
undo_button.click(
|
172 |
+
undo_last,
|
173 |
+
inputs=[history_state],
|
174 |
+
outputs=[answer_output, history_state]
|
175 |
+
)
|
176 |
+
|
177 |
+
clear_button.click(
|
178 |
+
clear_history,
|
179 |
+
inputs=[],
|
180 |
+
outputs=[answer_output, history_state]
|
181 |
+
)
|
182 |
+
|
183 |
with gr.Row():
|
184 |
history_gallery = gr.Gallery(label="History Log", elem_id="history_log")
|
185 |
submit_button.click(
|
|
|
215 |
outputs=[feedback_input]
|
216 |
)
|
217 |
|
218 |
+
VisualQAApp.launch(share=True, debug=True)
|