Spaces:
Sleeping
Sleeping
File size: 7,574 Bytes
3855474 e343b08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import gradio as gr
import torch
from transformers import (
AutoModelForCTC,
Wav2Vec2Processor,
AutoProcessor,
WhisperProcessor,
WhisperForConditionalGeneration,
TextStreamer
)
from unsloth import FastLanguageModel
import numpy as np
import librosa
from scipy.signal import butter, sosfilt
# Initialize device
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def apply_filter(audio_signal, sr, filter_type, cutoff_freq, slope=2, gain=0):
"""
Apply low-pass, high-pass, notch, or high-shelf filter to an audio signal.
"""
nyquist = sr / 2.0
if filter_type == "lowpass":
sos = butter(slope, cutoff_freq / nyquist, btype="low", output="sos")
elif filter_type == "highpass":
sos = butter(slope, cutoff_freq / nyquist, btype="high", output="sos")
elif filter_type == "notch":
sos = butter(slope, [cutoff_freq[0] / nyquist, cutoff_freq[1] / nyquist], btype="bandstop", output="sos")
elif filter_type == "highshelf":
gain_linear = 10 ** (gain / 20.0)
omega = 2 * np.pi * cutoff_freq / sr
alpha = np.sin(omega) / (2 * slope)
A = gain_linear
b0 = A * ((A + 1) + (A - 1) * np.cos(omega) + 2 * np.sqrt(A) * alpha)
b1 = -2 * A * ((A - 1) + (A + 1) * np.cos(omega))
b2 = A * ((A + 1) + (A - 1) * np.cos(omega) - 2 * np.sqrt(A) * alpha)
a0 = (A + 1) - (A - 1) * np.cos(omega) + 2 * np.sqrt(A) * alpha
a1 = 2 * ((A - 1) - (A + 1) * np.cos(omega))
a2 = (A + 1) - (A - 1) * np.cos(omega) - 2 * np.sqrt(A) * alpha
b = np.array([b0, b1, b2]) / a0
a = np.array([a0, a1, a2]) / a0
sos = np.array([[b[0], b[1], b[2], 1, a[1], a[2]]])
else:
raise ValueError("Invalid filter type.")
return sosfilt(sos, audio_signal)
def process_audio_filters(audio_signal, sr):
"""
Apply a series of filters to clean up the audio
"""
# Apply high-pass filter to remove low frequency noise
audio_signal = apply_filter(audio_signal, sr, "highpass", 80)
# Apply low-pass filter to remove high frequency noise
audio_signal = apply_filter(audio_signal, sr, "lowpass", 8000)
# Apply notch filter to remove power line interference (50/60 Hz)
audio_signal = apply_filter(audio_signal, sr, "notch", [45, 65])
# Apply high-shelf filter to boost high frequencies for clarity
audio_signal = apply_filter(audio_signal, sr, "highshelf", 3000, slope=1, gain=3)
return audio_signal
class ModelManager:
def __init__(self):
self.asr_models = {}
self.llm_model = None
self.llm_tokenizer = None
def load_wav2vec2_base(self):
model = AutoModelForCTC.from_pretrained("kabir259/w2v2-base_kabir").to(DEVICE)
processor = Wav2Vec2Processor.from_pretrained("kabir259/w2v2-base_kabir")
return model, processor
def load_wav2vec2_bert(self):
model = AutoModelForCTC.from_pretrained("Kabir259/w2v2-BERT_kabir").to(DEVICE)
processor = AutoProcessor.from_pretrained("Kabir259/w2v2-BERT_kabir")
return model, processor
def load_whisper_small(self):
model = WhisperForConditionalGeneration.from_pretrained("Kabir259/whisper-small_kabir").to(DEVICE)
processor = WhisperProcessor.from_pretrained("Kabir259/whisper-small_kabir")
model.generation_config.task = "transcribe"
return model, processor
def load_qwen2(self):
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="Kabir259/QWEN2-Medical",
max_seq_length=512,
dtype=torch.float16,
load_in_4bit=True,
)
FastLanguageModel.for_inference(model)
return model, tokenizer
def get_asr_model(self, model_name):
if model_name not in self.asr_models:
if model_name == "wav2vec2-base":
self.asr_models[model_name] = self.load_wav2vec2_base()
elif model_name == "wav2vec2-BERT":
self.asr_models[model_name] = self.load_wav2vec2_bert()
elif model_name == "whisper-small":
self.asr_models[model_name] = self.load_whisper_small()
return self.asr_models[model_name]
def get_llm_model(self):
if self.llm_model is None:
self.llm_model, self.llm_tokenizer = self.load_qwen2()
return self.llm_model, self.llm_tokenizer
def process_audio(audio_path, asr_model_name, model_manager):
model, processor = model_manager.get_asr_model(asr_model_name)
# Load and preprocess audio
audio, rate = librosa.load(audio_path, sr=16000)
# Apply audio filtering
filtered_audio = process_audio_filters(audio, rate)
if asr_model_name in ["wav2vec2-base", "wav2vec2-BERT"]:
# Process audio for wav2vec2 models
input_values = processor(filtered_audio, sampling_rate=16000, return_tensors="pt").input_values.to(DEVICE)
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
else: # whisper model
input_features = processor(filtered_audio, sampling_rate=16000, return_tensors="pt").input_features.to(DEVICE)
with torch.no_grad():
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription
def generate_llm_response(text, model_manager):
model, tokenizer = model_manager.get_llm_model()
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
Provide medical advice for the following condition or symptom
### Input:
{0}
### Response:
"""
inputs = tokenizer(
[alpaca_prompt.format(text)],
return_tensors="pt"
).to(DEVICE)
text_streamer = TextStreamer(tokenizer)
with torch.no_grad():
output_ids = model.generate(
**inputs,
streamer=text_streamer,
max_new_tokens=64
)
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return response
def process_pipeline(audio, asr_model_choice, model_manager):
# First step: ASR
transcription = process_audio(audio, asr_model_choice, model_manager)
# Second step: LLM
final_response = generate_llm_response(transcription, model_manager)
return transcription, final_response
# Initialize the model manager
model_manager = ModelManager()
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Medical Audio Consultation System")
with gr.Row():
audio_input = gr.Audio(source="microphone", type="filepath")
asr_model_choice = gr.Dropdown(
choices=["wav2vec2-base", "wav2vec2-BERT", "whisper-small"],
label="Select ASR Model"
)
with gr.Row():
transcription_output = gr.Textbox(label="Transcribed Text")
final_output = gr.Textbox(label="Medical Advice")
submit_btn = gr.Button("Process")
submit_btn.click(
fn=lambda audio, asr_choice: process_pipeline(audio, asr_choice, model_manager),
inputs=[audio_input, asr_model_choice],
outputs=[transcription_output, final_output]
)
if __name__ == "__main__":
demo.launch(share=True) |