Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
import torch | |
# Load the OCR model and processor | |
model_name = "microsoft/trocr-base-stage1" | |
processor = TrOCRProcessor.from_pretrained(model_name) | |
model = VisionEncoderDecoderModel.from_pretrained(model_name) | |
# Streamlit app title | |
st.title("OCR with TrOCR") | |
# Upload image section | |
uploaded_image = st.file_uploader("Upload an image for OCR", type=["jpg", "jpeg", "png"]) | |
if uploaded_image is not None: | |
# Open and display the uploaded image | |
image = Image.open(uploaded_image) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
# Convert image to suitable format | |
inputs = processor(images=image, return_tensors="pt") | |
# Perform OCR | |
with torch.no_grad(): | |
outputs = model.generate(**inputs) | |
# Decode the generated text | |
text = processor.decode(outputs[0], skip_special_tokens=True) | |
# Display the OCR result | |
st.write("Extracted Text:") | |
st.text(text) | |