Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import PyPDF2
|
3 |
+
import re
|
4 |
+
import nltk
|
5 |
+
from nltk.tokenize import word_tokenize
|
6 |
+
from nltk.corpus import wordnet
|
7 |
+
import requests
|
8 |
+
from typing import Optional
|
9 |
+
import os
|
10 |
+
import pandas as pd
|
11 |
+
from sqlalchemy import create_engine, Column, Integer, String, Float
|
12 |
+
from sqlalchemy.ext.declarative import declarative_base
|
13 |
+
from sqlalchemy.orm import sessionmaker
|
14 |
+
import json
|
15 |
+
import openai # Import OpenAI
|
16 |
+
|
17 |
+
# Initialize NLTK resources
|
18 |
+
def download_nltk_resources():
|
19 |
+
resources = {
|
20 |
+
'punkt': 'tokenizers/punkt',
|
21 |
+
'averaged_perceptron_tagger': 'taggers/averaged_perceptron_tagger',
|
22 |
+
'wordnet': 'corpora/wordnet',
|
23 |
+
'stopwords': 'corpora/stopwords'
|
24 |
+
}
|
25 |
+
for package, resource in resources.items():
|
26 |
+
try:
|
27 |
+
nltk.data.find(resource)
|
28 |
+
except LookupError:
|
29 |
+
nltk.download(package)
|
30 |
+
|
31 |
+
download_nltk_resources()
|
32 |
+
|
33 |
+
# Ensure spaCy model is downloaded
|
34 |
+
import spacy
|
35 |
+
try:
|
36 |
+
nlp = spacy.load("en_core_web_sm")
|
37 |
+
except OSError:
|
38 |
+
spacy.cli.download("en_core_web_sm")
|
39 |
+
nlp = spacy.load("en_core_web_sm")
|
40 |
+
|
41 |
+
# Database setup
|
42 |
+
Base = declarative_base()
|
43 |
+
|
44 |
+
class ResumeScore(Base):
|
45 |
+
__tablename__ = 'resume_scores'
|
46 |
+
id = Column(Integer, primary_key=True)
|
47 |
+
resume_name = Column(String)
|
48 |
+
score = Column(Float)
|
49 |
+
skills = Column(String)
|
50 |
+
certifications = Column(String)
|
51 |
+
experience_years = Column(Float)
|
52 |
+
education_level = Column(String)
|
53 |
+
summary = Column(String)
|
54 |
+
|
55 |
+
# Create engine and session
|
56 |
+
engine = create_engine('sqlite:///resumes.db')
|
57 |
+
Base.metadata.create_all(engine)
|
58 |
+
Session = sessionmaker(bind=engine)
|
59 |
+
session = Session()
|
60 |
+
|
61 |
+
# Custom CSS to enhance UI
|
62 |
+
def set_custom_css():
|
63 |
+
st.markdown("""
|
64 |
+
<style>
|
65 |
+
.stProgress .st-bo {
|
66 |
+
background-color: #f0f2f6;
|
67 |
+
}
|
68 |
+
.stProgress .st-bp {
|
69 |
+
background: linear-gradient(to right, #4CAF50, #8BC34A);
|
70 |
+
}
|
71 |
+
.skill-tag {
|
72 |
+
display: inline-block;
|
73 |
+
padding: 5px 10px;
|
74 |
+
}
|
75 |
+
</style>
|
76 |
+
""", unsafe_allow_html=True)
|
77 |
+
|
78 |
+
def get_docparser_data(file, api_key, parser_id) -> Optional[dict]:
|
79 |
+
upload_url = f"https://api.docparser.com/v1/document/upload/{parser_id}"
|
80 |
+
auth = (api_key, '') # Use HTTP Basic Auth with the API key
|
81 |
+
files = {'file': file}
|
82 |
+
try:
|
83 |
+
# Upload the document
|
84 |
+
response = requests.post(upload_url, auth=auth, files=files)
|
85 |
+
response.raise_for_status()
|
86 |
+
document_id = response.json().get('id')
|
87 |
+
|
88 |
+
# Ensure document ID is valid
|
89 |
+
if not document_id:
|
90 |
+
st.error("Failed to retrieve document ID from Docparser.")
|
91 |
+
return None
|
92 |
+
|
93 |
+
# Fetch parsed data
|
94 |
+
result_url = f"https://api.docparser.com/v1/results/{parser_id}/{document_id}"
|
95 |
+
result_response = requests.get(result_url, auth=auth)
|
96 |
+
result_response.raise_for_status()
|
97 |
+
data = result_response.json()
|
98 |
+
|
99 |
+
# Check if the response is a list and handle accordingly
|
100 |
+
if isinstance(data, list) and len(data) > 0:
|
101 |
+
data = data[0] # Assuming you want the first result
|
102 |
+
|
103 |
+
return data
|
104 |
+
except requests.exceptions.HTTPError as http_err:
|
105 |
+
st.error(f"HTTP error occurred: {http_err}")
|
106 |
+
except Exception as e:
|
107 |
+
st.error(f"Error fetching data from Docparser: {e}")
|
108 |
+
return None
|
109 |
+
|
110 |
+
def get_openai_data(file_path: str, openai_key: str) -> Optional[dict]:
|
111 |
+
openai.api_key = openai_key
|
112 |
+
try:
|
113 |
+
with open(file_path, 'rb') as file:
|
114 |
+
file_content = file.read()
|
115 |
+
response = openai.Completion.create(
|
116 |
+
engine="text-davinci-003",
|
117 |
+
prompt=f"Extract and analyze the resume content: {file_content}",
|
118 |
+
max_tokens=1500
|
119 |
+
)
|
120 |
+
return response.choices[0].text
|
121 |
+
except Exception as e:
|
122 |
+
st.error(f"Error fetching data from OpenAI: {e}")
|
123 |
+
return None
|
124 |
+
|
125 |
+
def calculate_weighted_score(skills, certifications, experience_years, education_level, projects, skill_weight, certification_weight, experience_weight, education_weight, project_weight):
|
126 |
+
skill_score = min(len(skills) * 15, 100)
|
127 |
+
certification_score = min(len(certifications) * 20, 100)
|
128 |
+
experience_score = min(experience_years * 15, 100)
|
129 |
+
education_score = 100 if education_level else 0
|
130 |
+
project_score = min(len(projects) * 10, 100) # Assuming each project contributes 10 points
|
131 |
+
|
132 |
+
total_score = (
|
133 |
+
skill_score * skill_weight +
|
134 |
+
certification_score * certification_weight +
|
135 |
+
experience_score * experience_weight +
|
136 |
+
education_score * education_weight +
|
137 |
+
project_score * project_weight
|
138 |
+
)
|
139 |
+
|
140 |
+
return round(min(total_score, 100), 2)
|
141 |
+
|
142 |
+
def process_resume(file, job_description, filename, parser_choice, openai_key=None, api_key=None, parser_id=None, skill_weight=0.9, certification_weight=0.05, experience_weight=0.03, education_weight=0.02, project_weight=0.1):
|
143 |
+
try:
|
144 |
+
if parser_choice == "Docparser":
|
145 |
+
data = get_docparser_data(file, api_key, parser_id)
|
146 |
+
elif parser_choice == "OpenAI":
|
147 |
+
data = get_openai_data(file, openai_key)
|
148 |
+
else:
|
149 |
+
st.error("Invalid parser choice")
|
150 |
+
return None
|
151 |
+
|
152 |
+
if not data:
|
153 |
+
st.warning(f"Failed to extract data from the resume {filename}")
|
154 |
+
return None
|
155 |
+
|
156 |
+
# Extract fields from the response
|
157 |
+
personal_details = {
|
158 |
+
'name': data.get('name', 'Unknown'),
|
159 |
+
'email': data.get('email', 'Unknown'),
|
160 |
+
'phone': data.get('phone', 'Unknown')
|
161 |
+
}
|
162 |
+
education = {
|
163 |
+
'degree': data.get('degree', 'Not specified'),
|
164 |
+
'institution': data.get('institution', 'Not specified'),
|
165 |
+
'year': data.get('year', 'Not specified')
|
166 |
+
}
|
167 |
+
experience_years = data.get('experience_years', 0)
|
168 |
+
|
169 |
+
# Ensure certifications, skills, and projects are lists of strings
|
170 |
+
certifications = [cert if isinstance(cert, str) else str(cert) for cert in data.get('certifications', [])]
|
171 |
+
skills = [skill if isinstance(skill, str) else str(skill) for skill in data.get('skills', [])]
|
172 |
+
projects = [project if isinstance(project, str) else str(project) for project in data.get('projects', [])] # Assuming 'projects' is a key in the data
|
173 |
+
summary = data.get('summary', 'No summary available')
|
174 |
+
|
175 |
+
# Calculate weighted score
|
176 |
+
weighted_score = calculate_weighted_score(
|
177 |
+
skills, certifications, experience_years, education.get('degree', 'Not specified'), projects,
|
178 |
+
skill_weight, certification_weight, experience_weight, education_weight, project_weight
|
179 |
+
)
|
180 |
+
|
181 |
+
resume_name = filename or personal_details.get('name', 'Unknown')
|
182 |
+
skills_str = ', '.join(skills)
|
183 |
+
certifications_str = ', '.join(certifications)
|
184 |
+
projects_str = ', '.join(projects)
|
185 |
+
|
186 |
+
resume_score = ResumeScore(
|
187 |
+
resume_name=resume_name,
|
188 |
+
score=weighted_score,
|
189 |
+
skills=skills_str,
|
190 |
+
certifications=certifications_str,
|
191 |
+
experience_years=experience_years,
|
192 |
+
education_level=education.get('degree', 'Not specified'),
|
193 |
+
summary=summary
|
194 |
+
)
|
195 |
+
session.add(resume_score)
|
196 |
+
session.commit()
|
197 |
+
|
198 |
+
result = {
|
199 |
+
'name': resume_name,
|
200 |
+
'score': weighted_score,
|
201 |
+
'personal_details': personal_details,
|
202 |
+
'education': education,
|
203 |
+
'experience': {'total_years': experience_years},
|
204 |
+
'certifications': certifications,
|
205 |
+
'skills': skills,
|
206 |
+
'projects': projects, # Include projects in the result
|
207 |
+
'summary': summary
|
208 |
+
}
|
209 |
+
|
210 |
+
return result
|
211 |
+
except Exception as e:
|
212 |
+
st.error(f"Error processing the resume {filename}: {e}")
|
213 |
+
session.rollback()
|
214 |
+
return None
|
215 |
+
|
216 |
+
def process_resumes(folder_path, job_description, parser_choice, openai_key=None, api_key=None, parser_id=None, skill_weight=0.9, certification_weight=0.05, experience_weight=0.03, education_weight=0.02, project_weight=0.1):
|
217 |
+
if not os.path.isdir(folder_path):
|
218 |
+
st.error("Invalid folder path")
|
219 |
+
return []
|
220 |
+
|
221 |
+
scores = []
|
222 |
+
processed_count = 0
|
223 |
+
|
224 |
+
try:
|
225 |
+
pdf_files = [f for f in os.listdir(folder_path) if f.lower().endswith('.pdf')]
|
226 |
+
|
227 |
+
if not pdf_files:
|
228 |
+
st.warning("No PDF files found in the folder")
|
229 |
+
return []
|
230 |
+
|
231 |
+
total_files = len(pdf_files)
|
232 |
+
progress_bar = st.progress(0)
|
233 |
+
|
234 |
+
for index, filename in enumerate(pdf_files):
|
235 |
+
file_path = os.path.join(folder_path, filename)
|
236 |
+
with open(file_path, 'rb') as file:
|
237 |
+
result = process_resume(file, job_description, filename, parser_choice, openai_key, api_key, parser_id, skill_weight, certification_weight, experience_weight, education_weight, project_weight)
|
238 |
+
if result:
|
239 |
+
scores.append(result)
|
240 |
+
processed_count += 1
|
241 |
+
|
242 |
+
progress = (index + 1) / total_files
|
243 |
+
progress_bar.progress(progress)
|
244 |
+
|
245 |
+
st.success(f"Successfully processed {processed_count} resumes")
|
246 |
+
return scores
|
247 |
+
|
248 |
+
except Exception as e:
|
249 |
+
st.error(f"Error processing resumes: {e}")
|
250 |
+
session.rollback()
|
251 |
+
return []
|
252 |
+
|
253 |
+
def display_results(result):
|
254 |
+
with st.expander(f"📄 {result.get('name', 'Unknown')} - Match: {result['score']}%"):
|
255 |
+
st.write(f"### Overall Match Score: {result['score']}%")
|
256 |
+
st.write("### Skills Found:")
|
257 |
+
if result['skills']:
|
258 |
+
for skill in result['skills']:
|
259 |
+
st.markdown(f"- {skill}")
|
260 |
+
else:
|
261 |
+
st.markdown("No skills found.")
|
262 |
+
|
263 |
+
st.write("### Certifications:")
|
264 |
+
if result['certifications']:
|
265 |
+
for cert in result['certifications']:
|
266 |
+
st.markdown(f"- {cert}")
|
267 |
+
else:
|
268 |
+
st.markdown("No certifications found.")
|
269 |
+
|
270 |
+
st.write(f"### Total Years of Experience: {result['experience'].get('total_years', 0)}")
|
271 |
+
st.write("### Education:")
|
272 |
+
degree = result['education'].get('degree', 'Not specified')
|
273 |
+
st.markdown(f"- Degree: {degree}")
|
274 |
+
|
275 |
+
if st.button(f"View Detailed Analysis ({result.get('name', 'Unknown')})", key=f"view_{result.get('name', 'default')}"):
|
276 |
+
st.write("#### Resume Summary:")
|
277 |
+
st.text(result['summary'])
|
278 |
+
|
279 |
+
def view_scores():
|
280 |
+
st.header("Stored Resume Scores")
|
281 |
+
resumes = session.query(ResumeScore).order_by(ResumeScore.score.desc()).all()
|
282 |
+
|
283 |
+
if resumes:
|
284 |
+
data = []
|
285 |
+
for idx, resume in enumerate(resumes, start=1):
|
286 |
+
try:
|
287 |
+
# Attempt to parse skills and certifications as JSON
|
288 |
+
skills = json.loads(resume.skills)
|
289 |
+
certifications = json.loads(resume.certifications)
|
290 |
+
|
291 |
+
# Extract values if they are in JSON format
|
292 |
+
skills_str = ', '.join([skill['key_0'] for skill in skills]) if isinstance(skills, list) else resume.skills
|
293 |
+
certifications_str = ', '.join([cert['key_0'] for cert in certifications]) if isinstance(certifications, list) else resume.certifications
|
294 |
+
except json.JSONDecodeError:
|
295 |
+
# If parsing fails, treat them as plain strings
|
296 |
+
skills_str = resume.skills
|
297 |
+
certifications_str = resume.certifications
|
298 |
+
|
299 |
+
data.append({
|
300 |
+
'S.No': idx,
|
301 |
+
'Name': resume.resume_name,
|
302 |
+
'Score': resume.score,
|
303 |
+
'Skills': skills_str,
|
304 |
+
'Certifications': certifications_str,
|
305 |
+
'Experience (Years)': resume.experience_years,
|
306 |
+
'Education': resume.education_level,
|
307 |
+
'Projects': resume.summary # Assuming projects are part of the summary or add a separate field if needed
|
308 |
+
})
|
309 |
+
|
310 |
+
df = pd.DataFrame(data)
|
311 |
+
df_display = df[['S.No', 'Name', 'Score', 'Skills', 'Certifications', 'Experience (Years)', 'Education', 'Projects']]
|
312 |
+
|
313 |
+
# Define a threshold for best-fit resumes
|
314 |
+
threshold = 50
|
315 |
+
best_fits = df[df['Score'] >= threshold]
|
316 |
+
|
317 |
+
# Display all resumes
|
318 |
+
st.subheader("All Resumes")
|
319 |
+
for index, row in df_display.iterrows():
|
320 |
+
st.write(f"**{row['S.No']}. {row['Name']}**")
|
321 |
+
st.write(f"Score: {row['Score']}%")
|
322 |
+
st.write(f"Skills: {row['Skills']}")
|
323 |
+
st.write(f"Certifications: {row['Certifications']}")
|
324 |
+
st.write(f"Experience: {row['Experience (Years)']} years")
|
325 |
+
st.write(f"Education: {row['Education']}")
|
326 |
+
st.write(f"Projects: {row['Projects']}")
|
327 |
+
|
328 |
+
col1, col2 = st.columns([1, 1])
|
329 |
+
with col1:
|
330 |
+
if st.button(f"View Detailed Analysis ({row['Name']})", key=f"view_{index}"):
|
331 |
+
st.write(f"## Analysis Report for {row['Name']}")
|
332 |
+
st.write(f"### Score: {row['Score']}%")
|
333 |
+
st.write(f"### Skills: {row['Skills']}")
|
334 |
+
st.write(f"### Certifications: {row['Certifications']}")
|
335 |
+
st.write(f"### Experience: {row['Experience (Years)']} years")
|
336 |
+
st.write(f"### Education: {row['Education']}")
|
337 |
+
st.write("### Projects:")
|
338 |
+
st.text(row['Projects'])
|
339 |
+
with col2:
|
340 |
+
if st.button(f"Delete {row['Name']}", key=f"delete_{index}"):
|
341 |
+
# Find the resume in the database and delete it
|
342 |
+
resume_to_delete = session.query(ResumeScore).filter_by(resume_name=row['Name']).first()
|
343 |
+
if resume_to_delete:
|
344 |
+
session.delete(resume_to_delete)
|
345 |
+
session.commit()
|
346 |
+
st.success(f"Deleted {row['Name']} from the database.")
|
347 |
+
st.experimental_set_query_params(refresh=True) # Use query params to trigger a rerun
|
348 |
+
|
349 |
+
# Display best-fit resumes
|
350 |
+
if not best_fits.empty:
|
351 |
+
st.subheader("Best Fit Resumes")
|
352 |
+
for index, row in best_fits.iterrows():
|
353 |
+
st.write(f"**{row['S.No']}. {row['Name']}**")
|
354 |
+
st.write(f"Score: {row['Score']}%")
|
355 |
+
st.write(f"Skills: {row['Skills']}")
|
356 |
+
st.write(f"Certifications: {row['Certifications']}")
|
357 |
+
st.write(f"Experience: {row['Experience (Years)']} years")
|
358 |
+
st.write(f"Education: {row['Education']}")
|
359 |
+
st.write(f"Projects: {row['Projects']}")
|
360 |
+
|
361 |
+
col1, col2 = st.columns([1, 1])
|
362 |
+
with col1:
|
363 |
+
if st.button(f"View Detailed Analysis ({row['Name']})", key=f"view_best_{index}"):
|
364 |
+
st.write(f"## Analysis Report for {row['Name']}")
|
365 |
+
st.write(f"### Score: {row['Score']}%")
|
366 |
+
st.write(f"### Skills: {row['Skills']}")
|
367 |
+
st.write(f"### Certifications: {row['Certifications']}")
|
368 |
+
st.write(f"### Experience: {row['Experience (Years)']} years")
|
369 |
+
st.write(f"### Education: {row['Education']}")
|
370 |
+
st.write("### Projects:")
|
371 |
+
st.text(row['Projects'])
|
372 |
+
with col2:
|
373 |
+
if st.button(f"Delete {row['Name']}", key=f"delete_best_{index}"):
|
374 |
+
# Find the resume in the database and delete it
|
375 |
+
resume_to_delete = session.query(ResumeScore).filter_by(resume_name=row['Name']).first()
|
376 |
+
if resume_to_delete:
|
377 |
+
session.delete(resume_to_delete)
|
378 |
+
session.commit()
|
379 |
+
st.success(f"Deleted {row['Name']} from the database.")
|
380 |
+
st.experimental_set_query_params(refresh=True) # Use query params to trigger a rerun
|
381 |
+
else:
|
382 |
+
st.write("No resume scores available.")
|
383 |
+
|
384 |
+
def main():
|
385 |
+
st.title("Resume Analyzer")
|
386 |
+
set_custom_css()
|
387 |
+
|
388 |
+
menu = ["Home", "View Scores"]
|
389 |
+
choice = st.sidebar.selectbox("Menu", menu)
|
390 |
+
|
391 |
+
if choice == "Home":
|
392 |
+
analysis_type = st.selectbox("Select Analysis Type:", ["Single Resume", "Folder Upload"])
|
393 |
+
method_choice = st.selectbox("Select Method:", ["Use LLM", "Use Field Extraction"])
|
394 |
+
|
395 |
+
openai_key = None # Initialize openai_key
|
396 |
+
if method_choice == "Use LLM":
|
397 |
+
openai_key = st.text_input("Enter OpenAI API Key:", type="password")
|
398 |
+
parser_choice = "OpenAI"
|
399 |
+
else:
|
400 |
+
parser_choice = "Docparser" # Only Docparser is available for field extraction
|
401 |
+
api_key = st.text_input("Enter Docparser API Key:", type="password")
|
402 |
+
parser_id = st.text_input("Enter Docparser Parser ID:")
|
403 |
+
|
404 |
+
job_description = st.text_area("Enter job description:", height=150, placeholder="Paste job description here...", key="job_desc")
|
405 |
+
|
406 |
+
# Configure weights
|
407 |
+
st.sidebar.header("Configure Weights")
|
408 |
+
skill_weight = st.sidebar.slider("Skill Weight", 0.0, 1.0, 0.9)
|
409 |
+
certification_weight = st.sidebar.slider("Certification Weight", 0.0, 1.0, 0.05)
|
410 |
+
experience_weight = st.sidebar.slider("Experience Weight", 0.0, 1.0, 0.03)
|
411 |
+
education_weight = st.sidebar.slider("Education Weight", 0.0, 1.0, 0.02)
|
412 |
+
project_weight = st.sidebar.slider("Project Weight", 0.0, 1.0, 0.1) # New slider for project weight
|
413 |
+
|
414 |
+
if analysis_type == "Single Resume":
|
415 |
+
uploaded_file = st.file_uploader("Upload a resume PDF file", type="pdf")
|
416 |
+
|
417 |
+
if st.button("Analyze Resume"):
|
418 |
+
if not uploaded_file:
|
419 |
+
st.error("Please upload a resume PDF file")
|
420 |
+
return
|
421 |
+
if not job_description:
|
422 |
+
st.error("Please enter a job description")
|
423 |
+
return
|
424 |
+
if method_choice == "Use LLM" and not openai_key:
|
425 |
+
st.error("Please enter the OpenAI API key")
|
426 |
+
return
|
427 |
+
if method_choice == "Use Field Extraction" and (not api_key or not parser_id):
|
428 |
+
st.error("Please enter the Docparser API key and Parser ID")
|
429 |
+
return
|
430 |
+
with st.spinner("Processing resume..."):
|
431 |
+
result = process_resume(uploaded_file, job_description, uploaded_file.name, parser_choice, openai_key, api_key, parser_id, skill_weight, certification_weight, experience_weight, education_weight, project_weight)
|
432 |
+
if result:
|
433 |
+
st.success("Analysis complete!")
|
434 |
+
display_results(result)
|
435 |
+
else:
|
436 |
+
st.warning("Failed to process the resume.")
|
437 |
+
|
438 |
+
elif analysis_type == "Folder Upload":
|
439 |
+
folder_path = st.text_input("Resume folder path:", placeholder="e.g. C:/Users/username/resumes")
|
440 |
+
|
441 |
+
if st.button("Analyze Resumes"):
|
442 |
+
if not folder_path:
|
443 |
+
st.error("Please enter the folder path containing resumes")
|
444 |
+
return
|
445 |
+
if not job_description:
|
446 |
+
st.error("Please enter a job description")
|
447 |
+
return
|
448 |
+
if method_choice == "Use LLM" and not openai_key:
|
449 |
+
st.error("Please enter the OpenAI API key")
|
450 |
+
return
|
451 |
+
if method_choice == "Use Field Extraction" and (not api_key or not parser_id):
|
452 |
+
st.error("Please enter the Docparser API key and Parser ID")
|
453 |
+
return
|
454 |
+
with st.spinner("Processing resumes..."):
|
455 |
+
scores = process_resumes(folder_path, job_description, parser_choice, openai_key, api_key, parser_id, skill_weight, certification_weight, experience_weight, education_weight, project_weight)
|
456 |
+
if scores:
|
457 |
+
st.success("Analysis complete!")
|
458 |
+
for result in scores:
|
459 |
+
display_results(result)
|
460 |
+
else:
|
461 |
+
st.warning("No valid resumes found to process")
|
462 |
+
|
463 |
+
with st.expander("ℹ️ How to use"):
|
464 |
+
st.markdown("""
|
465 |
+
1. Select the analysis type: Single Resume or Folder Upload.
|
466 |
+
2. Choose the method: Use LLM or Use Field Extraction.
|
467 |
+
3. If using LLM, enter the OpenAI API key.
|
468 |
+
4. If using Field Extraction, enter the Docparser API key and Parser ID.
|
469 |
+
5. Upload a resume PDF file or enter the path to a folder containing resumes.
|
470 |
+
6. Paste the job description.
|
471 |
+
7. Configure the weights for skills, certifications, experience, education, and projects.
|
472 |
+
8. Click 'Analyze' to start processing.
|
473 |
+
9. View the match score and extracted information.
|
474 |
+
10. Click 'View Detailed Analysis' to see the summary and more details.
|
475 |
+
""")
|
476 |
+
|
477 |
+
elif choice == "View Scores":
|
478 |
+
view_scores()
|
479 |
+
|
480 |
+
if __name__ == "__main__":
|
481 |
+
main()
|