Spaces:
Paused
Paused
File size: 8,570 Bytes
5238467 a8ec0d0 5238467 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from concurrent.futures import ProcessPoolExecutor
from functools import wraps
import hashlib
import logging
import typing as tp
import flashy
import flashy.distrib
import omegaconf
import torch
from torch.nn.utils.rnn import pad_sequence
logger = logging.getLogger(__name__)
def dict_from_config(cfg: omegaconf.DictConfig) -> dict:
"""Convenience function to map an omegaconf configuration to a dictionary.
Args:
cfg (omegaconf.DictConfig): Original configuration to map to dict.
Returns:
dict: Config as dictionary object.
"""
dct = omegaconf.OmegaConf.to_container(cfg, resolve=True)
assert isinstance(dct, dict)
return dct
def random_subset(dataset, max_samples: int, seed: int = 42) -> torch.utils.data.Subset:
if max_samples >= len(dataset):
return dataset
generator = torch.Generator().manual_seed(seed)
perm = torch.randperm(len(dataset), generator=generator)
return torch.utils.data.Subset(dataset, perm[:max_samples].tolist())
def get_loader(dataset, num_samples: tp.Optional[int], batch_size: int,
num_workers: int, seed: int, **kwargs) -> torch.utils.data.DataLoader:
"""Convenience function to load dataset into a dataloader with optional subset sampling.
Args:
dataset: Dataset to load.
num_samples (Optional[int]): Number of samples to limit subset size.
batch_size (int): Batch size.
num_workers (int): Number of workers for data loading.
seed (int): Random seed.
"""
if num_samples is not None:
dataset = random_subset(dataset, num_samples, seed)
dataloader = flashy.distrib.loader(
dataset,
batch_size=batch_size,
num_workers=num_workers,
**kwargs
)
return dataloader
def get_dataset_from_loader(dataloader):
dataset = dataloader.dataset
if isinstance(dataset, torch.utils.data.Subset):
return dataset.dataset
else:
return dataset
def multinomial(input: torch.Tensor, num_samples: int, replacement=False, *, generator=None):
"""torch.multinomial with arbitrary number of dimensions, and number of candidates on the last dimension.
Args:
input (torch.Tensor): The input tensor containing probabilities.
num_samples (int): Number of samples to draw.
replacement (bool): Whether to draw with replacement or not.
Keywords args:
generator (torch.Generator): A pseudorandom number generator for sampling.
Returns:
torch.Tensor: Last dimension contains num_samples indices
sampled from the multinomial probability distribution
located in the last dimension of tensor input.
"""
input_ = input.reshape(-1, input.shape[-1])
output_ = torch.multinomial(input_, num_samples=num_samples, replacement=replacement, generator=generator)
output = output_.reshape(*list(input.shape[:-1]), -1)
return output
def sample_top_k(probs: torch.Tensor, k: int) -> torch.Tensor:
"""Sample next token from top K values along the last dimension of the input probs tensor.
Args:
probs (torch.Tensor): Input probabilities with token candidates on the last dimension.
k (int): The k in “top-k”.
Returns:
torch.Tensor: Sampled tokens.
"""
top_k_value, _ = torch.topk(probs, k, dim=-1)
min_value_top_k = top_k_value[..., [-1]]
probs *= (probs >= min_value_top_k).float()
probs.div_(probs.sum(dim=-1, keepdim=True))
next_token = multinomial(probs, num_samples=1)
return next_token
def sample_top_p(probs: torch.Tensor, p: float) -> torch.Tensor:
"""Sample next token from top P probabilities along the last dimension of the input probs tensor.
Args:
probs (torch.Tensor): Input probabilities with token candidates on the last dimension.
p (int): The p in “top-p”.
Returns:
torch.Tensor: Sampled tokens.
"""
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort *= (~mask).float()
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_token = multinomial(probs_sort, num_samples=1)
next_token = torch.gather(probs_idx, -1, next_token)
return next_token
class DummyPoolExecutor:
"""Dummy pool executor to use when we actually have only 1 worker.
(e.g. instead of ProcessPoolExecutor).
"""
class DummyResult:
def __init__(self, func, *args, **kwargs):
self.func = func
self.args = args
self.kwargs = kwargs
def result(self):
return self.func(*self.args, **self.kwargs)
def __init__(self, workers, mp_context=None):
pass
def submit(self, func, *args, **kwargs):
return DummyPoolExecutor.DummyResult(func, *args, **kwargs)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, exc_tb):
return
def get_pool_executor(num_workers: int, mp_context=None):
return ProcessPoolExecutor(num_workers, mp_context) if num_workers > 1 else DummyPoolExecutor(1)
def length_to_mask(lengths: torch.Tensor, max_len: tp.Optional[int] = None) -> torch.Tensor:
"""Utility function to convert a tensor of sequence lengths to a mask (useful when working on padded sequences).
For example: [3, 5] => [[1, 1, 1, 0, 0], [1, 1, 1, 1, 1]]
Args:
lengths (torch.Tensor): tensor with lengths
max_len (int): can set the max length manually. Defaults to None.
Returns:
torch.Tensor: mask with 0s where there is pad tokens else 1s
"""
assert len(lengths.shape) == 1, "Length shape should be 1 dimensional."
final_length = lengths.max().item() if not max_len else max_len
final_length = max(final_length, 1) # if all seqs are of len zero we don't want a zero-size tensor
return torch.arange(final_length)[None, :].to(lengths.device) < lengths[:, None]
def hash_trick(word: str, vocab_size: int) -> int:
"""Hash trick to pair each word with an index
Args:
word (str): word we wish to convert to an index
vocab_size (int): size of the vocabulary
Returns:
int: index of the word in the embedding LUT
"""
hash = int(hashlib.sha256(word.encode("utf-8")).hexdigest(), 16)
return hash % vocab_size
def with_rank_rng(base_seed: int = 1234):
"""Decorator for a function so that the function will use a Random Number Generator
whose state depend on the GPU rank. The original RNG state is restored upon returning.
Args:
base_seed (int): Random seed.
"""
def _decorator(fun: tp.Callable):
@wraps(fun)
def _decorated(*args, **kwargs):
state = torch.get_rng_state()
seed = base_seed ^ flashy.distrib.rank()
torch.manual_seed(seed)
logger.debug('Rank dependent seed set to %d', seed)
try:
return fun(*args, **kwargs)
finally:
torch.set_rng_state(state)
logger.debug('RNG state restored.')
return _decorated
return _decorator
def collate(tensors: tp.List[torch.Tensor], dim: int = 0) -> tp.Tuple[torch.Tensor, torch.Tensor]:
"""Get a list of tensors and collate them to a single tensor. according to the following logic:
- `dim` specifies the time dimension which will be stacked and padded.
- The output will contain 1 new dimension (dimension index 0) which will be the size of
of the original list.
Args:
tensors (tp.List[torch.Tensor]): List of tensors to collate.
dim (int): Dimension which will be stacked and padded.
Returns:
tp.Tuple[torch.Tensor, torch.Tensor]:
torch.Tensor: Stacked and padded tensor. The output will contain 1 new dimension
(dimension index 0) which will be the size of the original list.
torch.Tensor: Tensor containing length of original tensor sizes (without padding).
"""
tensors = [x.transpose(0, dim) for x in tensors]
lens = torch.LongTensor([len(x) for x in tensors])
padded_tensors = pad_sequence(tensors)
padded_tensors = padded_tensors.transpose(0, 1)
padded_tensors = padded_tensors.transpose(1, dim + 1)
return padded_tensors, lens
|