Spaces:
Runtime error
Runtime error
import torch | |
from PIL import Image | |
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
import os | |
import time | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
MODEL_ID = "CohereForAI/aya-23-8B" | |
MODEL_NAME = MODEL_ID.split("/")[-1] | |
TITLE = "<h1><center>Aya-23-Chatbox</center></h1>" | |
DESCRIPTION = f'<h3><center>MODEL: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></center></h3>' | |
CSS = """ | |
.duplicate-button { | |
margin: auto !important; | |
color: white !important; | |
background: black !important; | |
border-radius: 100vh !important; | |
} | |
""" | |
#QUANTIZE | |
QUANTIZE_4BIT = True | |
USE_GRAD_CHECKPOINTING = True | |
TRAIN_BATCH_SIZE = 2 | |
TRAIN_MAX_SEQ_LENGTH = 512 | |
USE_FLASH_ATTENTION = False | |
GRAD_ACC_STEPS = 16 | |
quantization_config = None | |
if QUANTIZE_4BIT: | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_compute_dtype=torch.bfloat16, | |
) | |
attn_implementation = None | |
if USE_FLASH_ATTENTION: | |
attn_implementation="flash_attention_2" | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID, | |
quantization_config=quantization_config, | |
attn_implementation=attn_implementation, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int): | |
print(f'message is - {message}') | |
print(f'history is - {history}') | |
conversation = [] | |
for prompt, answer in history: | |
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}]) | |
conversation.append({"role": "user", "content": message}) | |
print(f"Conversation is -\n{conversation}") | |
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device) | |
prompt_padded_len = len(input_ids[0]) | |
gen_tokens= model.generate( | |
input_ids, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
) | |
gen_tokens = [ | |
gt[prompt_padded_len:] for gt in gen_tokens | |
] | |
gen_text = tokenizer.batch_decode(gen_tokens, skip_special_tokens=True) | |
return gen_text | |
chatbot = gr.Chatbot(height=450) | |
with gr.Blocks(css=CSS) as demo: | |
gr.HTML(TITLE) | |
gr.HTML(DESCRIPTION) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
gr.ChatInterface( | |
fn=stream_chat, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.8, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=4096, | |
step=1, | |
value=1024, | |
label="Max new tokens", | |
render=False, | |
), | |
], | |
examples=[ | |
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."], | |
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."], | |
["Tell me a random fun fact about the Roman Empire."], | |
["Show me a code snippet of a website's sticky header in CSS and JavaScript."], | |
], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch() | |