Teachershub / app.py
Omnibus's picture
Update app.py
677fb85 verified
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient
import random
from datetime import datetime
#from models import models
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
models=[
"google/gemma-7b",
"google/gemma-7b-it",
"google/gemma-2b",
"google/gemma-2b-it",
"openchat/openchat-3.5-0106",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"JunRyeol/jr_model",
"bigcode/starcoder2-15b",
]
def test_models():
log_box=[]
for model in models:
start_time = datetime.now()
try:
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=128,
top_p=0.9,
repetition_penalty=1.0,
do_sample=True,
seed=111111111,
)
print(f'trying: {model}\n')
client= InferenceClient(model)
outp=""
stream=client.text_generation("What is a cat", **generate_kwargs, stream=True, details=True, return_full_text=True)
for response in stream:
outp += response.token.text
print (outp)
time_delta = datetime.now() - start_time
count=time_delta.total_seconds()
#if time_delta.total_seconds() >= 180:
log = {"Model":model,"Status":"Success","Output":outp, "Time":count}
print(f'{log}\n')
log_box.append(log)
except Exception as e:
time_delta = datetime.now() - start_time
count=time_delta.total_seconds()
log = {"Model":model,"Status":"Error","Output":e,"Time":count}
print(f'{log}\n')
log_box.append(log)
yield log_box
def format_prompt_default(message, history,cust_p):
prompt = ""
if history:
#<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
for user_prompt, bot_response in history:
prompt += f"{user_prompt}\n"
print(prompt)
prompt += f"{bot_response}\n"
print(prompt)
#prompt += f"{message}\n"
prompt+=cust_p.replace("USER_INPUT",message)
return prompt
def format_prompt_gemma(message, history,cust_p):
prompt = ""
if history:
for user_prompt, bot_response in history:
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
prompt += f"<start_of_turn>model{bot_response}<end_of_turn>"
if VERBOSE==True:
print(prompt)
#prompt += f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
prompt+=cust_p.replace("USER_INPUT",message)
return prompt
def format_prompt_openc(message, history,cust_p):
#prompt = "GPT4 Correct User: "
prompt=""
if history:
#<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
for user_prompt, bot_response in history:
prompt += f"{user_prompt}"
prompt += f"<|end_of_turn|>"
prompt += f"GPT4 Correct Assistant: "
prompt += f"{bot_response}"
prompt += f"<|end_of_turn|>"
print(prompt)
#GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant:
prompt+=cust_p.replace("USER_INPUT",message)
return prompt
def format_prompt_mixtral(message, history,cust_p):
prompt = "<s>"
if history:
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
#prompt += f"[INST] {message} [/INST]"
prompt+=cust_p.replace("USER_INPUT",message)
return prompt
def format_prompt_choose(message, history, cust_p, model_name):
if "gemma" in models[model_name].lower():
return format_prompt_gemma(message,history,cust_p)
if "mixtral" in models[model_name].lower():
return format_prompt_mixtral(message,history,cust_p)
if "openchat" in models[model_name].lower():
return format_prompt_openc(message,history,cust_p)
else:
return format_prompt_default(message,history,cust_p)
def load_models(inp):
print(type(inp))
print(inp)
print(models[inp])
model_state= InferenceClient(models[inp])
out_box=gr.update(label=models[inp])
if "gemma" in models[inp].lower():
prompt_out="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model"
return out_box,prompt_out, model_state
if "mixtral" in models[inp].lower():
prompt_out="[INST] USER_INPUT [/INST]"
return out_box,prompt_out, model_state
if "openchat" in models[inp].lower():
prompt_out="GPT4 Correct User: USER_INPUT<|end_of_turn|>GPT4 Correct Assistant: "
return out_box,prompt_out, model_state
else:
prompt_out="USER_INPUT\n"
return out_box,prompt_out, model_state
VERBOSE=False
def load_models_OG(inp):
if VERBOSE==True:
print(type(inp))
print(inp)
print(models[inp])
#client_z.clear()
#client_z.append(InferenceClient(models[inp]))
return gr.update(label=models[inp])
def format_prompt(message, history, cust_p):
prompt = ""
if history:
for user_prompt, bot_response in history:
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
prompt += f"<start_of_turn>model{bot_response}<end_of_turn>"
if VERBOSE==True:
print(prompt)
#prompt += f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
prompt+=cust_p.replace("USER_INPUT",message)
return prompt
def chat_inf(system_prompt,prompt,history,memory,model_state,model_name,seed,temp,tokens,top_p,rep_p,chat_mem,cust_p):
#token max=8192
model_n=models[model_name]
print(model_state)
hist_len=0
client=model_state
if not history:
history = []
hist_len=0
if not memory:
memory = []
mem_len=0
if memory:
for ea in memory[0-chat_mem:]:
hist_len+=len(str(ea))
in_len=len(system_prompt+prompt)+hist_len
if (in_len+tokens) > 8000:
history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
yield history,memory
else:
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
if system_prompt:
formatted_prompt = format_prompt_choose(f"{system_prompt}, {prompt}", memory[0-chat_mem:],cust_p,model_name)
else:
formatted_prompt = format_prompt_choose(prompt, memory[0-chat_mem:],cust_p,model_name)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
output += response.token.text
yield [(prompt,output)],memory
history.append((prompt,output))
memory.append((prompt,output))
yield history,memory
if VERBOSE==True:
print("\n######### HIST "+str(in_len))
print("\n######### TOKENS "+str(tokens))
def get_screenshot(chat: list,height=5000,width=600,chatblock=[],theme="light",wait=3000,header=True):
print(chatblock)
tog = 0
if chatblock:
tog = 3
result = ss_client.predict(str(chat),height,width,chatblock,header,theme,wait,api_name="/run_script")
out = f'https://omnibus-html-image-current-tab.hf.space/file={result[tog]}'
print(out)
return out
def clear_fn():
return None,None,None,None
rand_val=random.randint(1,1111111111111111)
def check_rand(inp,val):
if inp==True:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
else:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
with gr.Blocks() as app:
model_state=gr.State()
memory=gr.State()
gr.HTML("""<center><h1 style='font-size:xx-large;'>Huggingface Hub InferenceClient</h1><br><h3>Chatbot's</h3></center>""")
chat_b = gr.Chatbot(height=500)
with gr.Group():
with gr.Row():
with gr.Column(scale=3):
inp = gr.Textbox(label="Prompt")
sys_inp = gr.Textbox(label="System Prompt (optional)")
with gr.Accordion("Prompt Format",open=False):
custom_prompt=gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=3,value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")
with gr.Row():
with gr.Column(scale=2):
btn = gr.Button("Chat")
with gr.Column(scale=1):
with gr.Group():
stop_btn=gr.Button("Stop")
clear_btn=gr.Button("Clear")
test_btn=gr.Button("Test")
client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True)
with gr.Column(scale=1):
with gr.Group():
rand = gr.Checkbox(label="Random Seed", value=True)
seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
rep_p=gr.Slider(label="Repetition Penalty",step=0.01, minimum=0.1, maximum=2.0, value=0.99)
chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4)
with gr.Accordion(label="Screenshot",open=False):
with gr.Row():
with gr.Column(scale=3):
im_btn=gr.Button("Screenshot")
img=gr.Image(type='filepath')
with gr.Column(scale=1):
with gr.Row():
im_height=gr.Number(label="Height",value=5000)
im_width=gr.Number(label="Width",value=500)
wait_time=gr.Number(label="Wait Time",value=3000)
theme=gr.Radio(label="Theme", choices=["light","dark"],value="light")
chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True)
test_json=gr.JSON(label="Test Output")
test_btn.click(test_models,None,test_json)
client_choice.change(load_models,client_choice,[chat_b,custom_prompt,model_state])
app.load(load_models,client_choice,[chat_b,custom_prompt,model_state])
im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,model_state,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,model_state,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
stop_btn.click(None,None,None,cancels=[go,im_go,chat_sub])
clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b,memory])
app.queue(default_concurrency_limit=10).launch()