MergekitCustom / appB.py
K00B404's picture
Rename app.py to appB.py
e89cb73 verified
raw
history blame
12.7 kB
import os
import pathlib
import random
import string
import tempfile
import time
from concurrent.futures import ThreadPoolExecutor
from typing import Iterable, List
import gradio as gr
import huggingface_hub
import torch
import yaml
from gradio_logsview.logsview import Log, LogsView, LogsViewRunner
from mergekit.config import MergeConfiguration
from clean_community_org import garbage_collect_empty_models
has_gpu = torch.cuda.is_available()
# Running directly from Python doesn't work well with Gradio+run_process because of:
# Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method
# Let's use the CLI instead.
#
# import mergekit.merge
# from mergekit.common import parse_kmb
# from mergekit.options import MergeOptions
#
# merge_options = (
# MergeOptions(
# copy_tokenizer=True,
# cuda=True,
# low_cpu_memory=True,
# write_model_card=True,
# )
# if has_gpu
# else MergeOptions(
# allow_crimes=True,
# out_shard_size=parse_kmb("1B"),
# lazy_unpickle=True,
# write_model_card=True,
# )
# )
cli = "mergekit-yaml config.yaml merge --copy-tokenizer" + (
" --cuda --low-cpu-memory" if has_gpu else " --allow-crimes --out-shard-size 1B --lazy-unpickle"
)
MARKDOWN_DESCRIPTION = """
# mergekit-gui
The fastest way to perform a model merge πŸ”₯
Specify a YAML configuration file (see examples below) and a HF token and this app will perform the merge and upload the merged model to your user profile.
"""
MARKDOWN_ARTICLE = """
___
## Merge Configuration
[Mergekit](https://github.com/arcee-ai/mergekit) configurations are YAML documents specifying the operations to perform in order to produce your merged model.
Below are the primary elements of a configuration file:
- `merge_method`: Specifies the method to use for merging models. See [Merge Methods](https://github.com/arcee-ai/mergekit#merge-methods) for a list.
- `slices`: Defines slices of layers from different models to be used. This field is mutually exclusive with `models`.
- `models`: Defines entire models to be used for merging. This field is mutually exclusive with `slices`.
- `base_model`: Specifies the base model used in some merging methods.
- `parameters`: Holds various parameters such as weights and densities, which can also be specified at different levels of the configuration.
- `dtype`: Specifies the data type used for the merging operation.
- `tokenizer_source`: Determines how to construct a tokenizer for the merged model.
## Merge Methods
A quick overview of the currently supported merge methods:
| Method | `merge_method` value | Multi-Model | Uses base model |
| -------------------------------------------------------------------------------------------- | -------------------- | ----------- | --------------- |
| Linear ([Model Soups](https://arxiv.org/abs/2203.05482)) | `linear` | βœ… | ❌ |
| SLERP | `slerp` | ❌ | βœ… |
| [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `task_arithmetic` | βœ… | βœ… |
| [TIES](https://arxiv.org/abs/2306.01708) | `ties` | βœ… | βœ… |
| [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) | `dare_ties` | βœ… | βœ… |
| [DARE](https://arxiv.org/abs/2311.03099) [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `dare_linear` | βœ… | βœ… |
| Passthrough | `passthrough` | ❌ | ❌ |
| [Model Stock](https://arxiv.org/abs/2403.19522) | `model_stock` | βœ… | βœ… |
## Citation
This GUI is powered by [Arcee's MergeKit](https://arxiv.org/abs/2403.13257).
If you use it in your research, please cite the following paper:
```
@article{goddard2024arcee,
title={Arcee's MergeKit: A Toolkit for Merging Large Language Models},
author={Goddard, Charles and Siriwardhana, Shamane and Ehghaghi, Malikeh and Meyers, Luke and Karpukhin, Vlad and Benedict, Brian and McQuade, Mark and Solawetz, Jacob},
journal={arXiv preprint arXiv:2403.13257},
year={2024}
}
```
This Space is heavily inspired by LazyMergeKit by Maxime Labonne (see [Colab](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb)).
"""
examples = [[str(f)] for f in pathlib.Path("examples").glob("*.yaml")]
# Do not set community token as `HF_TOKEN` to avoid accidentally using it in merge scripts.
# `COMMUNITY_HF_TOKEN` is used to upload models to the community organization (https://huggingface.co/mergekit-community)
# when user do not provide a token.
COMMUNITY_HF_TOKEN = os.getenv("COMMUNITY_HF_TOKEN")
# config builder
import yaml
def generate_config(base_model, models, layer_range, merge_method):
slices = []
for model in models:
slice_config = {
"sources": [
{
"model": model,
"layer_range": layer_range
}
]
}
slices.append(slice_config)
config = {
"slices": slices,
"merge_method": merge_method,
"base_model": base_model,
"parameters": {
"t": [
{
"filter": "self_attn",
"value": [0, 0.5, 0.3, 0.7, 1]
},
{
"filter": "mlp",
"value": [1, 0.5, 0.7, 0.3, 0]
},
{
"value": 0.5
}
]
},
"dtype": "bfloat16"
}
return yaml.dump(config)
# Add these imports
from functools import partial
from itertools import chain
# Generate config block
# btn_generate_config.click(fn=partial_generate_config, inputs=[input_base_model, input_models, input_layer_range], outputs=[generated_config])
def merge(yaml_config: str, hf_token: str, repo_name: str) -> Iterable[List[Log]]:
runner = LogsViewRunner()
if not yaml_config:
yield runner.log("Empty yaml, pick an example below", level="ERROR")
return
try:
merge_config = MergeConfiguration.model_validate(yaml.safe_load(yaml_config))
except Exception as e:
yield runner.log(f"Invalid yaml {e}", level="ERROR")
return
is_community_model = False
if not hf_token:
if "/" in repo_name and not repo_name.startswith("mergekit-community/"):
yield runner.log(
f"Cannot upload merge model to namespace {repo_name.split('/')[0]}: you must provide a valid token.",
level="ERROR",
)
return
yield runner.log(
"No HF token provided. Your merged model will be uploaded to the https://huggingface.co/mergekit-community organization."
)
is_community_model = True
if not COMMUNITY_HF_TOKEN:
raise gr.Error("Cannot upload to community org: community token not set by Space owner.")
hf_token = COMMUNITY_HF_TOKEN
api = huggingface_hub.HfApi(token=hf_token)
with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname:
tmpdir = pathlib.Path(tmpdirname)
merged_path = tmpdir / "merged"
merged_path.mkdir(parents=True, exist_ok=True)
config_path = merged_path / "config.yaml"
config_path.write_text(yaml_config)
yield runner.log(f"Merge configuration saved in {config_path}")
if not repo_name:
yield runner.log("No repo name provided. Generating a random one.")
repo_name = f"mergekit-{merge_config.merge_method}"
# Make repo_name "unique" (no need to be extra careful on uniqueness)
repo_name += "-" + "".join(random.choices(string.ascii_lowercase, k=7))
repo_name = repo_name.replace("/", "-").strip("-")
if is_community_model and not repo_name.startswith("mergekit-community/"):
repo_name = f"mergekit-community/{repo_name}"
try:
yield runner.log(f"Creating repo {repo_name}")
repo_url = api.create_repo(repo_name, exist_ok=True)
yield runner.log(f"Repo created: {repo_url}")
except Exception as e:
yield runner.log(f"Error creating repo {e}", level="ERROR")
return
# Set tmp HF_HOME to avoid filling up disk Space
tmp_env = os.environ.copy() # taken from https://stackoverflow.com/a/4453495
tmp_env["HF_HOME"] = f"{tmpdirname}/.cache"
yield from runner.run_command(cli.split(), cwd=merged_path, env=tmp_env)
if runner.exit_code != 0:
yield runner.log("Merge failed. Deleting repo as no model is uploaded.", level="ERROR")
api.delete_repo(repo_url.repo_id)
return
yield runner.log("Model merged successfully. Uploading to HF.")
yield from runner.run_python(
api.upload_folder,
repo_id=repo_url.repo_id,
folder_path=merged_path / "merge",
)
yield runner.log(f"Model successfully uploaded to HF: {repo_url.repo_id}")
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN_DESCRIPTION)
with gr.Row():
# Configure dropdown options
BASE_MODELS = ["bert-base-uncased", "distilbert-base-uncased", ...] # Add other base models here
MERGE_METHODS = ["linear", "slerp", ...] # Add other merge methods here
LAYER_RANGE = range(32)
# Create input objects
input_base_model = gr.Dropdown(label='Base Model', choices=BASE_MODELS)
input_models = gr.Dropdown(label='Models', choices=BASE_MODELS)
input_layer_range = gr.Slider(minimum=0, maximum=32, step=1, label='Layer Range')
input_merge_method = gr.Dropdown(label='Merge Method', choices=MERGE_METHODS)
# Wrap generate_config in a partial function to fix the signature
partial_generate_config = partial(generate_config, base_model=input_base_model, merge_method=input_merge_method)
#gen_config_block = gr.Blocks()
#with gen_config_block:
# generated_config = gr.Textbox(label='Generated Config', interactive=False)
# btn_generate_config = gr.Button('Generate Config', variant='secondary')
generated_config = gr.Textbox(label='Generated Config', interactive=False)
btn_generate_config = gr.Button('Generate Config', variant='secondary')
with gr.Row():
filename = gr.Textbox(visible=False, label="filename")
config = gr.Code(language="yaml", lines=10, label="config.yaml")
with gr.Column():
token = gr.Textbox(
lines=1,
label="HF Write Token",
info="https://hf.co/settings/token",
type="password",
placeholder="Optional. Will upload merged model to MergeKit Community if empty.",
)
repo_name = gr.Textbox(
lines=1,
label="Repo name",
placeholder="Optional. Will create a random name if empty.",
)
button = gr.Button("Merge", variant="primary")
logs = LogsView(label="Terminal output")
gr.Examples(
examples,
fn=lambda s: (s,),
run_on_click=True,
label="Examples",
inputs=[filename],
outputs=[config],
)
gr.Markdown(MARKDOWN_ARTICLE)
btn_generate_config.click(fn=partial_generate_config, inputs=[input_base_model, input_models, input_layer_range], outputs=[generated_config])
button.click(fn=merge, inputs=[config, token, repo_name], outputs=[logs])
# Run garbage collection every hour to keep the community org clean.
# Empty models might exists if the merge fails abruptly (e.g. if user leaves the Space).
def _garbage_collect_every_hour():
while True:
try:
garbage_collect_empty_models(token=COMMUNITY_HF_TOKEN)
except Exception as e:
print("Error running garbage collection", e)
time.sleep(3600)
pool = ThreadPoolExecutor()
pool.submit(_garbage_collect_every_hour)
demo.queue(default_concurrency_limit=1).launch()