MergekitCustom / app.py
Wauplin's picture
Wauplin HF staff
return to normal commandl ine
7295302
raw
history blame
7.5 kB
import pathlib
import tempfile
from typing import Iterable, List
import gradio as gr
import huggingface_hub
import torch
import yaml
from gradio_logsview.logsview import Log, LogsView, LogsViewRunner
from mergekit.config import MergeConfiguration
has_gpu = torch.cuda.is_available()
# Running directly from Python doesn't work well with Gradio+run_process because of:
# Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method
# Let's use the CLI instead.
#
# import mergekit.merge
# from mergekit.common import parse_kmb
# from mergekit.options import MergeOptions
#
# merge_options = (
# MergeOptions(
# copy_tokenizer=True,
# cuda=True,
# low_cpu_memory=True,
# write_model_card=True,
# )
# if has_gpu
# else MergeOptions(
# allow_crimes=True,
# out_shard_size=parse_kmb("1B"),
# lazy_unpickle=True,
# write_model_card=True,
# )
# )
cli = "mergekit-yaml config.yaml merge --copy-tokenizer" + (
" --cuda --low-cpu-memory"
if has_gpu
else " --allow-crimes --out-shard-size 1B --lazy-unpickle"
)
## This Space is heavily inspired by LazyMergeKit by Maxime Labonne
## https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb
MARKDOWN_DESCRIPTION = """
# mergekit-gui
The fastest way to perform a model merge πŸ”₯
Specify a YAML configuration file (see examples below) and a HF token and this app will perform the merge and upload the merged model to your user profile.
"""
MARKDOWN_ARTICLE = """
___
## Merge Configuration
[Mergekit](https://github.com/arcee-ai/mergekit) configurations are YAML documents specifying the operations to perform in order to produce your merged model.
Below are the primary elements of a configuration file:
- `merge_method`: Specifies the method to use for merging models. See [Merge Methods](https://github.com/arcee-ai/mergekit#merge-methods) for a list.
- `slices`: Defines slices of layers from different models to be used. This field is mutually exclusive with `models`.
- `models`: Defines entire models to be used for merging. This field is mutually exclusive with `slices`.
- `base_model`: Specifies the base model used in some merging methods.
- `parameters`: Holds various parameters such as weights and densities, which can also be specified at different levels of the configuration.
- `dtype`: Specifies the data type used for the merging operation.
- `tokenizer_source`: Determines how to construct a tokenizer for the merged model.
## Merge Methods
A quick overview of the currently supported merge methods:
| Method | `merge_method` value | Multi-Model | Uses base model |
| -------------------------------------------------------------------------------------------- | -------------------- | ----------- | --------------- |
| Linear ([Model Soups](https://arxiv.org/abs/2203.05482)) | `linear` | βœ… | ❌ |
| SLERP | `slerp` | ❌ | βœ… |
| [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `task_arithmetic` | βœ… | βœ… |
| [TIES](https://arxiv.org/abs/2306.01708) | `ties` | βœ… | βœ… |
| [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) | `dare_ties` | βœ… | βœ… |
| [DARE](https://arxiv.org/abs/2311.03099) [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `dare_linear` | βœ… | βœ… |
| Passthrough | `passthrough` | ❌ | ❌ |
| [Model Stock](https://arxiv.org/abs/2403.19522) | `model_stock` | βœ… | βœ… |
"""
examples = [[str(f)] for f in pathlib.Path("examples").glob("*.yml")]
def merge(
yaml_config: str, hf_token: str | None, repo_name: str | None
) -> Iterable[List[Log]]:
if not yaml_config:
raise gr.Error("Empty yaml, pick an example below")
try:
merge_config = MergeConfiguration.model_validate(yaml.safe_load(yaml_config))
except Exception as e:
raise gr.Error(f"Invalid yaml {e}")
runner = LogsViewRunner()
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdir = pathlib.Path(tmpdirname)
merged_path = tmpdir / "merged"
merged_path.mkdir(parents=True, exist_ok=True)
config_path = merged_path / "config.yaml"
config_path.write_text(yaml_config)
yield runner.log(f"Merge configuration saved in {config_path}")
if token is not None and repo_name == "":
name = "-".join(
model.model.path for model in merge_config.referenced_models()
)
repo_name = f"mergekit-{merge_config.merge_method}-{name}".replace(
"/", "-"
).strip("-")
if len(repo_name) > 50:
repo_name = repo_name[:25] + "-etc-" + repo_name[25:]
runner.log(f"Will save merged in {repo_name} once process is done.")
if token is None:
yield runner.log(
"No token provided, merge will run in dry-run mode (no upload at the end of the process)."
)
yield from runner.run_command(cli.split(), cwd=merged_path)
if runner.exit_code != 0:
yield runner.log(
"Merge failed. Terminating here. No model has been uploaded."
)
return
if hf_token is not None:
api = huggingface_hub.HfApi(token=hf_token)
yield runner.log("Creating repo")
repo_url = api.create_repo(repo_name, exist_ok=True)
yield runner.log(f"Repo created: {repo_url}")
folder_url = api.upload_folder(
repo_id=repo_url.repo_id, folder_path=merged_path
)
yield runner.log(f"Model successfully uploaded to {folder_url}")
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN_DESCRIPTION)
with gr.Row():
filename = gr.Textbox(visible=False, label="filename")
config = gr.Code(language="yaml", lines=10, label="config.yaml")
with gr.Column():
token = gr.Textbox(
lines=1,
label="HF Write Token",
info="https://hf.co/settings/token",
type="password",
placeholder="optional, will not upload merge if empty (dry-run)",
)
repo_name = gr.Textbox(
lines=1,
label="Repo name",
placeholder="optional, will create a random name if empty",
)
button = gr.Button("Merge", variant="primary")
logs = LogsView()
gr.Examples(
examples,
fn=lambda s: (s,),
run_on_click=True,
label="Examples",
inputs=[filename],
outputs=[config],
)
gr.Markdown(MARKDOWN_ARTICLE)
button.click(fn=merge, inputs=[config, token, repo_name], outputs=[logs])
demo.queue(default_concurrency_limit=1).launch()