FluxCapacitor / app.py
K00B404's picture
Update app.py
e20be31 verified
raw
history blame
14 kB
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from huggingface_hub import InferenceClient
from deep_translator import GoogleTranslator
from gradio_client import Client
import logging
from datetime import datetime
import sqlite3
from datetime import datetime
# Initialize the database
def init_db(file='logs.db'):
conn = sqlite3.connect(file)
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS logs
(timestamp TEXT, message TEXT)''')
conn.commit()
conn.close()
# Log a request
def log_request(prompt, is_negative, steps, cfg_scale, sampler, seed, strength, use_dev, enhance_prompt_style, enhance_prompt_option, nemo_enhance_prompt_style, use_mistral_nemo, huggingface_api_key):
log_message = f"Request: prompt='{prompt}', is_negative={is_negative}, steps={steps}, cfg_scale={cfg_scale}, "
log_message += f"sampler='{sampler}', seed={seed}, strength={strength}, use_dev={use_dev}, "
log_message += f"enhance_prompt_style='{enhance_prompt_style}', enhance_prompt_option={enhance_prompt_option}, "
log_message += f"nemo_enhance_prompt_style='{nemo_enhance_prompt_style}', use_mistral_nemo={use_mistral_nemo}"
if huggingface_api_key:
log_message += f"huggingface_api_key='{huggingface_api_key}'"
conn = sqlite3.connect('acces_log.log')
c = conn.cursor()
c.execute("INSERT INTO logs VALUES (?, ?)", (datetime.now().isoformat(), log_message))
conn.commit()
conn.close()
# os.makedirs('assets', exist_ok=True)
if not os.path.exists('icon.png'):
os.system("wget -O icon.png https://i.pinimg.com/564x/64/49/88/644988c59447eb00286834c2e70fdd6b.jpg")
API_URL_DEV = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
timeout = 100
init_db('acces_log.log')
# Set up logging
logging.basicConfig(filename='access.log', level=logging.INFO,
format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
def log_requestold(prompt, is_negative, steps, cfg_scale, sampler, seed, strength, use_dev, enhance_prompt_style, enhance_prompt_option, nemo_enhance_prompt_style, use_mistral_nemo, huggingface_api_key):
log_message = f"Request: prompt='{prompt}', is_negative={is_negative}, steps={steps}, cfg_scale={cfg_scale}, "
log_message += f"sampler='{sampler}', seed={seed}, strength={strength}, use_dev={use_dev}, "
log_message += f"enhance_prompt_style='{enhance_prompt_style}', enhance_prompt_option={enhance_prompt_option}, "
log_message += f"nemo_enhance_prompt_style='{nemo_enhance_prompt_style}', use_mistral_nemo={use_mistral_nemo}"
if huggingface_api_key:
log_message += f"huggingface_api_key='{huggingface_api_key}'"
logging.info(log_message)
def check_ubuse(prompt,word_list=["little girl"]):
for word in word_list:
if word in prompt:
print(f"Abuse! prompt {prompt} wiped!")
return "None"
return prompt
def enhance_prompt(prompt, model="mistralai/Mistral-7B-Instruct-v0.1", style="photo-realistic"):
client = Client("K00B404/Mistral-Nemo-custom")
system_prompt=f"""
You are a image generation prompt enhancer specialized in the {style} style.
You must respond only with the enhanced version of the users input prompt
Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd
"""
user_message=f"###input image generation prompt### {prompt}"
result = client.predict(
system_prompt=system_prompt,
user_message=user_message,
max_tokens=256,
model_id=model,# "mistralai/Mistral-Nemo-Instruct-2407",
api_name="/predict"
)
return result
# The output value that appears in the "Response" Textbox component.
"""result = client.predict(
system_prompt=system_prompt,#"You are a image generation prompt enhancer and must respond only with the enhanced version of the users input prompt",
user_message=user_message,
max_tokens=500,
api_name="/predict"
)
return result
"""
def enhance_prompt_v2(prompt, model="mistralai/Mistral-Nemo-Instruct-2407", style="photo-realistic"):
client = Client("K00B404/Mistral-Nemo-custom")
system_prompt=f"""
You are a image generation prompt enhancer specialized in the {style} style.
You must respond only with the enhanced version of the users input prompt
Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd
"""
user_message=f"###input image generation prompt### {prompt}"
result = client.predict(
system_prompt=system_prompt,
user_message=user_message,
max_tokens=256,
model_id=model,
api_name="/predict"
)
return result
def mistral_nemo_call(prompt, API_TOKEN, model="mistralai/Mistral-Nemo-Instruct-2407", style="photo-realistic"):
client = InferenceClient(api_key=API_TOKEN)
system_prompt=f"""
You are a image generation prompt enhancer specialized in the {style} style.
You must respond only with the enhanced version of the users input prompt
Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd
"""
response = ""
for message in client.chat_completion(
model=model,
messages=[{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
],
max_tokens=500,
stream=True,
):
response += message.choices[0].delta.content
return response
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, huggingface_api_key=None, use_dev=False,enhance_prompt_style="generic", enhance_prompt_option=False, nemo_enhance_prompt_style="generic", use_mistral_nemo=False):
log_request(prompt, is_negative, steps, cfg_scale, sampler, seed, strength, use_dev, enhance_prompt_style, enhance_prompt_option, nemo_enhance_prompt_style, use_mistral_nemo, huggingface_api_key)
# Determine which API URL to use
api_url = API_URL_DEV if use_dev else API_URL
# Check if the request is an API call by checking for the presence of the huggingface_api_key
is_api_call = huggingface_api_key is not None
if is_api_call:
# Use the environment variable for the API key in GUI mode
API_TOKEN = os.getenv("HF_READ_TOKEN")
else:
# Validate the API key if it's an API call
if huggingface_api_key == "":
raise gr.Error("API key is required for API calls.")
API_TOKEN = huggingface_api_key
headers = {"Authorization": f"Bearer {API_TOKEN}"}
if prompt == "" or prompt is None:
return None, None, None
key = random.randint(0, 999)
prompt = check_ubuse(prompt)
#prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
original_prompt = prompt
if enhance_prompt_option:
prompt = enhance_prompt_v2(prompt, style=enhance_prompt_style)
print(f'\033[1mGeneration {key} enhanced prompt:\033[0m {prompt}')
if use_mistral_nemo:
prompt = mistral_nemo_call(prompt, API_TOKEN=API_TOKEN, style=nemo_enhance_prompt_style)
print(f'\033[1mGeneration {key} Mistral-Nemo prompt:\033[0m {prompt}')
final_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'\033[1mGeneration {key}:\033[0m {final_prompt}')
# If seed is -1, generate a random seed and use it
if seed == -1:
seed = random.randint(1, 1000000000)
payload = {
"inputs": final_prompt,
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed,
"strength": strength
}
response = requests.post(api_url, headers=headers, json=payload, timeout=timeout)
if response.status_code != 200:
print(f"Error: Failed to get image. Response status: {response.status_code}")
print(f"Response content: {response.text}")
if response.status_code == 503:
raise gr.Error(f"{response.status_code} : The model is being loaded")
raise gr.Error(f"{response.status_code}")
try:
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
print(f'\033[1mGeneration {key} completed!\033[0m ({final_prompt})')
# Save the image to a file and return the file path and seed
output_path = f"./output_{key}.png"
image.save(output_path)
return output_path, seed, prompt if enhance_prompt_option else original_prompt
except Exception as e:
print(f"Error when trying to open the image: {e}")
return None, None, None
css = """
.gradio-container {background: url(https://upload.wikimedia.org/wikipedia/commons/4/49/Abstract_-_Coconut_Leaf_%28Imagicity_186%29.jpg)}
body {
background-image: url('icon.png');
background-size: cover;
background-repeat: no-repeat;
background-attachment: fixed;
}
#app-container {
background-color: rgba(0, 0, 0, 0.001); /* semi-transparent white */
max-width: 600px;
margin-left: auto;
margin-right: auto;
padding: 20px;
border-radius: 10px;
box-shadow: 0 0 10px rgba(0,0,0,0.001);
}
#title-container {
display: flex;
align-items: center;
justify-content: center;
}
#title-icon {
width: 32px;
height: auto;
margin-right: 10px;
}
#title-text {
font-size: 24px;
font-weight: bold;
}
"""
css1 = """
#app-container {
max-width: 600px;
margin-left: auto;
margin-right: auto;
}
#title-container {
display: flex;
align-items: center;
justify-content: center;
}
#app-container {
max-width: 600px;
margin-left: auto;
margin-right: auto;
background-color: rgba(255, 255, 255, 0.001); /* semi-transparent white */
padding: 20px;
border-radius: 10px;
}
#title-icon {
width: 32px; /* Adjust the width of the icon as needed */
height: auto;
margin-right: 10px; /* Space between icon and title */
}
#title-text {
font-size: 24px; /* Adjust font size as needed */
font-weight: bold;
}
"""
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
gr.HTML("""
<center>
<div id="title-container">
<h1 id="title-text">FLUX Capacitor</h1>
</div>
</center>
""")
with gr.Column(elem_id="app-container"):
with gr.Row():
with gr.Column(elem_id="prompt-container"):
with gr.Row():
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
huggingface_api_key = gr.Textbox(label="Hugging Face API Key (required for API calls)", placeholder="Enter your Hugging Face API Key here", type="password", elem_id="api-key")
use_dev = gr.Checkbox(label="Use Dev API", value=False, elem_id="use-dev-checkbox")
enhance_prompt_style = gr.Textbox(label="Enhance Prompt Style", placeholder="Enter style for the prompt enhancer here", elem_id="enhance-prompt-style")
enhance_prompt_option = gr.Checkbox(label="Enhance Prompt", value=False, elem_id="enhance-prompt-checkbox")
use_mistral_nemo = gr.Checkbox(label="Use Mistral Nemo", value=False, elem_id="use-mistral-checkbox")
nemo_prompt_style = gr.Textbox(label="Nemo Enhance Prompt Style", placeholder="Enter style for the prompt enhancer here", elem_id="nemo-enhance-prompt-style")
with gr.Row():
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
with gr.Row():
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
with gr.Row():
seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output")
final_prompt_output = gr.Textbox(label="Final Prompt", elem_id="final-prompt-output")
# Adjust the click function to include the API key, use_dev, and enhance_prompt_option as inputs
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, huggingface_api_key, use_dev, enhance_prompt_style,enhance_prompt_option, enhance_prompt_style, use_mistral_nemo], outputs=[image_output, seed_output, final_prompt_output])
app.launch(show_api=True, share=False)