K-A-Uthman
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tensorflow.keras.applications import ResNet50
|
2 |
+
from tensorflow.keras.preprocessing import image
|
3 |
+
from tensorflow.keras.applications.resnet50 import preprocess_input
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from sklearn.ensemble import RandomForestClassifier
|
7 |
+
import gradio as gr
|
8 |
+
from joblib import load
|
9 |
+
|
10 |
+
|
11 |
+
# Load pre-trained ResNet50 model without top layers
|
12 |
+
base_model = ResNet50(weights='imagenet', include_top=False)
|
13 |
+
|
14 |
+
# Function to extract features using ResNet50
|
15 |
+
def extract_resnet_features(img_path):
|
16 |
+
img = image.load_img(img_path, target_size=(224, 224))
|
17 |
+
x = image.img_to_array(img)
|
18 |
+
x = np.expand_dims(x, axis=0)
|
19 |
+
x = preprocess_input(x)
|
20 |
+
features = base_model.predict(x)
|
21 |
+
features_flattened = features.flatten()
|
22 |
+
return features_flattened
|
23 |
+
|
24 |
+
|
25 |
+
# Load the trained Random Forest classifier
|
26 |
+
rf_classifier = load('random_forest_model2.joblib')
|
27 |
+
|
28 |
+
# Function to make predictions
|
29 |
+
def predict(image):
|
30 |
+
# Convert image to feature vector using ResNet50 (you can replace this with your feature extraction method)
|
31 |
+
features = extract_resnet_features(image)
|
32 |
+
|
33 |
+
# Make prediction using Random Forest classifier
|
34 |
+
prediction = rf_classifier.predict([features])[0]
|
35 |
+
|
36 |
+
return prediction
|
37 |
+
|
38 |
+
# Define Gradio interface
|
39 |
+
iface = gr.Interface(fn=predict, inputs="image", outputs="text", title="Brain Tumor Classification")
|
40 |
+
iface.launch()
|