Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import random | |
import pytest | |
from datasets import load_dataset | |
from llamafactory.data import get_dataset | |
from llamafactory.hparams import get_train_args | |
from llamafactory.model import load_tokenizer | |
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") | |
TRAIN_ARGS = { | |
"model_name_or_path": TINY_LLAMA, | |
"stage": "sft", | |
"do_train": True, | |
"finetuning_type": "full", | |
"dataset": "llamafactory/tiny-supervised-dataset", | |
"dataset_dir": "ONLINE", | |
"template": "llama3", | |
"cutoff_len": 8192, | |
"overwrite_cache": True, | |
"output_dir": "dummy_dir", | |
"overwrite_output_dir": True, | |
"fp16": True, | |
} | |
def test_supervised(num_samples: int): | |
model_args, data_args, training_args, _, _ = get_train_args(TRAIN_ARGS) | |
tokenizer_module = load_tokenizer(model_args) | |
tokenizer = tokenizer_module["tokenizer"] | |
tokenized_data = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module) | |
original_data = load_dataset(TRAIN_ARGS["dataset"], split="train") | |
indexes = random.choices(range(len(original_data)), k=num_samples) | |
for index in indexes: | |
decoded_result = tokenizer.decode(tokenized_data["input_ids"][index]) | |
prompt = original_data[index]["instruction"] | |
if original_data[index]["input"]: | |
prompt += "\n" + original_data[index]["input"] | |
messages = [ | |
{"role": "user", "content": prompt}, | |
{"role": "assistant", "content": original_data[index]["output"]}, | |
] | |
templated_result = tokenizer.apply_chat_template(messages, tokenize=False) | |
assert decoded_result == templated_result | |