Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING, Dict | |
from transformers.trainer_utils import SchedulerType | |
from ...extras.constants import TRAINING_STAGES | |
from ...extras.misc import get_device_count | |
from ...extras.packages import is_gradio_available | |
from ..common import DEFAULT_DATA_DIR, list_checkpoints, list_datasets | |
from ..utils import change_stage, list_config_paths, list_output_dirs | |
from .data import create_preview_box | |
if is_gradio_available(): | |
import gradio as gr | |
if TYPE_CHECKING: | |
from gradio.components import Component | |
from ..engine import Engine | |
def create_train_tab(engine: "Engine") -> Dict[str, "Component"]: | |
input_elems = engine.manager.get_base_elems() | |
elem_dict = dict() | |
with gr.Row(): | |
training_stage = gr.Dropdown( | |
choices=list(TRAINING_STAGES.keys()), value=list(TRAINING_STAGES.keys())[0], scale=1 | |
) | |
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=1) | |
dataset = gr.Dropdown(multiselect=True, allow_custom_value=True, scale=4) | |
preview_elems = create_preview_box(dataset_dir, dataset) | |
input_elems.update({training_stage, dataset_dir, dataset}) | |
elem_dict.update(dict(training_stage=training_stage, dataset_dir=dataset_dir, dataset=dataset, **preview_elems)) | |
with gr.Row(): | |
learning_rate = gr.Textbox(value="5e-5") | |
num_train_epochs = gr.Textbox(value="3.0") | |
max_grad_norm = gr.Textbox(value="1.0") | |
max_samples = gr.Textbox(value="100000") | |
compute_type = gr.Dropdown(choices=["fp16", "bf16", "fp32", "pure_bf16"], value="fp16") | |
input_elems.update({learning_rate, num_train_epochs, max_grad_norm, max_samples, compute_type}) | |
elem_dict.update( | |
dict( | |
learning_rate=learning_rate, | |
num_train_epochs=num_train_epochs, | |
max_grad_norm=max_grad_norm, | |
max_samples=max_samples, | |
compute_type=compute_type, | |
) | |
) | |
with gr.Row(): | |
cutoff_len = gr.Slider(minimum=4, maximum=65536, value=1024, step=1) | |
batch_size = gr.Slider(minimum=1, maximum=1024, value=2, step=1) | |
gradient_accumulation_steps = gr.Slider(minimum=1, maximum=1024, value=8, step=1) | |
val_size = gr.Slider(minimum=0, maximum=1, value=0, step=0.001) | |
lr_scheduler_type = gr.Dropdown(choices=[scheduler.value for scheduler in SchedulerType], value="cosine") | |
input_elems.update({cutoff_len, batch_size, gradient_accumulation_steps, val_size, lr_scheduler_type}) | |
elem_dict.update( | |
dict( | |
cutoff_len=cutoff_len, | |
batch_size=batch_size, | |
gradient_accumulation_steps=gradient_accumulation_steps, | |
val_size=val_size, | |
lr_scheduler_type=lr_scheduler_type, | |
) | |
) | |
with gr.Accordion(open=False) as extra_tab: | |
with gr.Row(): | |
logging_steps = gr.Slider(minimum=1, maximum=1000, value=5, step=5) | |
save_steps = gr.Slider(minimum=10, maximum=5000, value=100, step=10) | |
warmup_steps = gr.Slider(minimum=0, maximum=5000, value=0, step=1) | |
neftune_alpha = gr.Slider(minimum=0, maximum=10, value=0, step=0.1) | |
optim = gr.Textbox(value="adamw_torch") | |
with gr.Row(): | |
with gr.Column(): | |
resize_vocab = gr.Checkbox() | |
packing = gr.Checkbox() | |
with gr.Column(): | |
upcast_layernorm = gr.Checkbox() | |
use_llama_pro = gr.Checkbox() | |
with gr.Column(): | |
shift_attn = gr.Checkbox() | |
report_to = gr.Checkbox() | |
input_elems.update( | |
{ | |
logging_steps, | |
save_steps, | |
warmup_steps, | |
neftune_alpha, | |
optim, | |
resize_vocab, | |
packing, | |
upcast_layernorm, | |
use_llama_pro, | |
shift_attn, | |
report_to, | |
} | |
) | |
elem_dict.update( | |
dict( | |
extra_tab=extra_tab, | |
logging_steps=logging_steps, | |
save_steps=save_steps, | |
warmup_steps=warmup_steps, | |
neftune_alpha=neftune_alpha, | |
optim=optim, | |
resize_vocab=resize_vocab, | |
packing=packing, | |
upcast_layernorm=upcast_layernorm, | |
use_llama_pro=use_llama_pro, | |
shift_attn=shift_attn, | |
report_to=report_to, | |
) | |
) | |
with gr.Accordion(open=False) as freeze_tab: | |
with gr.Row(): | |
freeze_trainable_layers = gr.Slider(minimum=-128, maximum=128, value=2, step=1) | |
freeze_trainable_modules = gr.Textbox(value="all") | |
freeze_extra_modules = gr.Textbox() | |
input_elems.update({freeze_trainable_layers, freeze_trainable_modules, freeze_extra_modules}) | |
elem_dict.update( | |
dict( | |
freeze_tab=freeze_tab, | |
freeze_trainable_layers=freeze_trainable_layers, | |
freeze_trainable_modules=freeze_trainable_modules, | |
freeze_extra_modules=freeze_extra_modules, | |
) | |
) | |
with gr.Accordion(open=False) as lora_tab: | |
with gr.Row(): | |
lora_rank = gr.Slider(minimum=1, maximum=1024, value=8, step=1) | |
lora_alpha = gr.Slider(minimum=1, maximum=2048, value=16, step=1) | |
lora_dropout = gr.Slider(minimum=0, maximum=1, value=0, step=0.01) | |
loraplus_lr_ratio = gr.Slider(minimum=0, maximum=64, value=0, step=0.01) | |
create_new_adapter = gr.Checkbox() | |
with gr.Row(): | |
use_rslora = gr.Checkbox() | |
use_dora = gr.Checkbox() | |
use_pissa = gr.Checkbox() | |
lora_target = gr.Textbox(scale=2) | |
additional_target = gr.Textbox(scale=2) | |
input_elems.update( | |
{ | |
lora_rank, | |
lora_alpha, | |
lora_dropout, | |
loraplus_lr_ratio, | |
create_new_adapter, | |
use_rslora, | |
use_dora, | |
use_pissa, | |
lora_target, | |
additional_target, | |
} | |
) | |
elem_dict.update( | |
dict( | |
lora_tab=lora_tab, | |
lora_rank=lora_rank, | |
lora_alpha=lora_alpha, | |
lora_dropout=lora_dropout, | |
loraplus_lr_ratio=loraplus_lr_ratio, | |
create_new_adapter=create_new_adapter, | |
use_rslora=use_rslora, | |
use_dora=use_dora, | |
use_pissa=use_pissa, | |
lora_target=lora_target, | |
additional_target=additional_target, | |
) | |
) | |
with gr.Accordion(open=False) as rlhf_tab: | |
with gr.Row(): | |
pref_beta = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.01) | |
pref_ftx = gr.Slider(minimum=0, maximum=10, value=0, step=0.01) | |
pref_loss = gr.Dropdown(choices=["sigmoid", "hinge", "ipo", "kto_pair", "orpo", "simpo"], value="sigmoid") | |
reward_model = gr.Dropdown(multiselect=True, allow_custom_value=True) | |
with gr.Column(): | |
ppo_score_norm = gr.Checkbox() | |
ppo_whiten_rewards = gr.Checkbox() | |
input_elems.update({pref_beta, pref_ftx, pref_loss, reward_model, ppo_score_norm, ppo_whiten_rewards}) | |
elem_dict.update( | |
dict( | |
rlhf_tab=rlhf_tab, | |
pref_beta=pref_beta, | |
pref_ftx=pref_ftx, | |
pref_loss=pref_loss, | |
reward_model=reward_model, | |
ppo_score_norm=ppo_score_norm, | |
ppo_whiten_rewards=ppo_whiten_rewards, | |
) | |
) | |
with gr.Accordion(open=False) as galore_tab: | |
with gr.Row(): | |
use_galore = gr.Checkbox() | |
galore_rank = gr.Slider(minimum=1, maximum=1024, value=16, step=1) | |
galore_update_interval = gr.Slider(minimum=1, maximum=1024, value=200, step=1) | |
galore_scale = gr.Slider(minimum=0, maximum=1, value=0.25, step=0.01) | |
galore_target = gr.Textbox(value="all") | |
input_elems.update({use_galore, galore_rank, galore_update_interval, galore_scale, galore_target}) | |
elem_dict.update( | |
dict( | |
galore_tab=galore_tab, | |
use_galore=use_galore, | |
galore_rank=galore_rank, | |
galore_update_interval=galore_update_interval, | |
galore_scale=galore_scale, | |
galore_target=galore_target, | |
) | |
) | |
with gr.Accordion(open=False) as badam_tab: | |
with gr.Row(): | |
use_badam = gr.Checkbox() | |
badam_mode = gr.Dropdown(choices=["layer", "ratio"], value="layer") | |
badam_switch_mode = gr.Dropdown(choices=["ascending", "descending", "random", "fixed"], value="ascending") | |
badam_switch_interval = gr.Slider(minimum=1, maximum=1024, value=50, step=1) | |
badam_update_ratio = gr.Slider(minimum=0, maximum=1, value=0.05, step=0.01) | |
input_elems.update({use_badam, badam_mode, badam_switch_mode, badam_switch_interval, badam_update_ratio}) | |
elem_dict.update( | |
dict( | |
badam_tab=badam_tab, | |
use_badam=use_badam, | |
badam_mode=badam_mode, | |
badam_switch_mode=badam_switch_mode, | |
badam_switch_interval=badam_switch_interval, | |
badam_update_ratio=badam_update_ratio, | |
) | |
) | |
with gr.Row(): | |
cmd_preview_btn = gr.Button() | |
arg_save_btn = gr.Button() | |
arg_load_btn = gr.Button() | |
start_btn = gr.Button(variant="primary") | |
stop_btn = gr.Button(variant="stop") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
with gr.Row(): | |
current_time = gr.Textbox(visible=False, interactive=False) | |
output_dir = gr.Dropdown(allow_custom_value=True) | |
config_path = gr.Dropdown(allow_custom_value=True) | |
with gr.Row(): | |
device_count = gr.Textbox(value=str(get_device_count() or 1), interactive=False) | |
ds_stage = gr.Dropdown(choices=["none", "2", "3"], value="none") | |
ds_offload = gr.Checkbox() | |
with gr.Row(): | |
resume_btn = gr.Checkbox(visible=False, interactive=False) | |
progress_bar = gr.Slider(visible=False, interactive=False) | |
with gr.Row(): | |
output_box = gr.Markdown() | |
with gr.Column(scale=1): | |
loss_viewer = gr.Plot() | |
input_elems.update({output_dir, config_path, device_count, ds_stage, ds_offload}) | |
elem_dict.update( | |
dict( | |
cmd_preview_btn=cmd_preview_btn, | |
arg_save_btn=arg_save_btn, | |
arg_load_btn=arg_load_btn, | |
start_btn=start_btn, | |
stop_btn=stop_btn, | |
current_time=current_time, | |
output_dir=output_dir, | |
config_path=config_path, | |
device_count=device_count, | |
ds_stage=ds_stage, | |
ds_offload=ds_offload, | |
resume_btn=resume_btn, | |
progress_bar=progress_bar, | |
output_box=output_box, | |
loss_viewer=loss_viewer, | |
) | |
) | |
output_elems = [output_box, progress_bar, loss_viewer] | |
cmd_preview_btn.click(engine.runner.preview_train, input_elems, output_elems, concurrency_limit=None) | |
start_btn.click(engine.runner.run_train, input_elems, output_elems) | |
stop_btn.click(engine.runner.set_abort) | |
resume_btn.change(engine.runner.monitor, outputs=output_elems, concurrency_limit=None) | |
lang = engine.manager.get_elem_by_id("top.lang") | |
model_name: "gr.Dropdown" = engine.manager.get_elem_by_id("top.model_name") | |
finetuning_type: "gr.Dropdown" = engine.manager.get_elem_by_id("top.finetuning_type") | |
arg_save_btn.click(engine.runner.save_args, input_elems, output_elems, concurrency_limit=None) | |
arg_load_btn.click( | |
engine.runner.load_args, [lang, config_path], list(input_elems) + [output_box], concurrency_limit=None | |
) | |
dataset.focus(list_datasets, [dataset_dir, training_stage], [dataset], queue=False) | |
training_stage.change(change_stage, [training_stage], [dataset, packing], queue=False) | |
reward_model.focus(list_checkpoints, [model_name, finetuning_type], [reward_model], queue=False) | |
model_name.change(list_output_dirs, [model_name, finetuning_type, current_time], [output_dir], queue=False) | |
finetuning_type.change(list_output_dirs, [model_name, finetuning_type, current_time], [output_dir], queue=False) | |
output_dir.change( | |
list_output_dirs, [model_name, finetuning_type, current_time], [output_dir], concurrency_limit=None | |
) | |
output_dir.input( | |
engine.runner.check_output_dir, | |
[lang, model_name, finetuning_type, output_dir], | |
list(input_elems) + [output_box], | |
concurrency_limit=None, | |
) | |
config_path.change(list_config_paths, [current_time], [config_path], queue=False) | |
return elem_dict | |