Spaces:
Running
Running
# Copyright 2024 the LlamaFactory team. | |
# | |
# This code is inspired by the CarperAI's trlx library. | |
# https://github.com/CarperAI/trlx/blob/v0.7.0/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# MIT License | |
# | |
# Copyright (c) 2022 CarperAI | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
from typing import TYPE_CHECKING, List, Optional | |
from ...data import PairwiseDataCollatorWithPadding, get_dataset, split_dataset | |
from ...extras.callbacks import FixValueHeadModelCallback | |
from ...extras.misc import fix_valuehead_checkpoint | |
from ...extras.ploting import plot_loss | |
from ...model import load_model, load_tokenizer | |
from ..trainer_utils import create_modelcard_and_push | |
from .metric import compute_accuracy | |
from .trainer import PairwiseTrainer | |
if TYPE_CHECKING: | |
from transformers import Seq2SeqTrainingArguments, TrainerCallback | |
from ...hparams import DataArguments, FinetuningArguments, ModelArguments | |
def run_rm( | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
training_args: "Seq2SeqTrainingArguments", | |
finetuning_args: "FinetuningArguments", | |
callbacks: Optional[List["TrainerCallback"]] = None, | |
): | |
tokenizer_module = load_tokenizer(model_args) | |
tokenizer = tokenizer_module["tokenizer"] | |
dataset = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module) | |
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True) | |
data_collator = PairwiseDataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) | |
# Update arguments | |
training_args.remove_unused_columns = False # important for pairwise dataset | |
# Initialize our Trainer | |
trainer = PairwiseTrainer( | |
model=model, | |
args=training_args, | |
finetuning_args=finetuning_args, | |
data_collator=data_collator, | |
callbacks=callbacks + [FixValueHeadModelCallback()], | |
compute_metrics=compute_accuracy, | |
**tokenizer_module, | |
**split_dataset(dataset, data_args, training_args), | |
) | |
# Training | |
if training_args.do_train: | |
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) | |
trainer.save_model() | |
if training_args.should_save: | |
fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors) | |
trainer.log_metrics("train", train_result.metrics) | |
trainer.save_metrics("train", train_result.metrics) | |
trainer.save_state() | |
if trainer.is_world_process_zero() and finetuning_args.plot_loss: | |
plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "eval_accuracy"]) | |
# Evaluation | |
if training_args.do_eval: | |
metrics = trainer.evaluate(metric_key_prefix="eval") | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
# Predict | |
if training_args.do_predict: | |
predict_results = trainer.predict(dataset, metric_key_prefix="predict") | |
trainer.log_metrics("predict", predict_results.metrics) | |
trainer.save_metrics("predict", predict_results.metrics) | |
trainer.save_predictions(predict_results) | |
# Create model card | |
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args) | |