Spaces:
Running
Running
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team. | |
# | |
# This code is inspired by the HuggingFace's transformers library. | |
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import TYPE_CHECKING, List, Optional | |
from transformers import DataCollatorForLanguageModeling | |
from ...data import get_dataset, split_dataset | |
from ...extras.ploting import plot_loss | |
from ...model import load_model, load_tokenizer | |
from ..trainer_utils import create_modelcard_and_push | |
from .trainer import CustomTrainer | |
if TYPE_CHECKING: | |
from transformers import Seq2SeqTrainingArguments, TrainerCallback | |
from ...hparams import DataArguments, FinetuningArguments, ModelArguments | |
def run_pt( | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
training_args: "Seq2SeqTrainingArguments", | |
finetuning_args: "FinetuningArguments", | |
callbacks: Optional[List["TrainerCallback"]] = None, | |
): | |
tokenizer_module = load_tokenizer(model_args) | |
tokenizer = tokenizer_module["tokenizer"] | |
dataset = get_dataset(model_args, data_args, training_args, stage="pt", **tokenizer_module) | |
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) | |
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) | |
# Initialize our Trainer | |
trainer = CustomTrainer( | |
model=model, | |
args=training_args, | |
finetuning_args=finetuning_args, | |
data_collator=data_collator, | |
callbacks=callbacks, | |
**tokenizer_module, | |
**split_dataset(dataset, data_args, training_args), | |
) | |
# Training | |
if training_args.do_train: | |
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) | |
trainer.save_model() | |
trainer.log_metrics("train", train_result.metrics) | |
trainer.save_metrics("train", train_result.metrics) | |
trainer.save_state() | |
if trainer.is_world_process_zero() and finetuning_args.plot_loss: | |
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"]) | |
# Evaluation | |
if training_args.do_eval: | |
metrics = trainer.evaluate(metric_key_prefix="eval") | |
try: | |
perplexity = math.exp(metrics["eval_loss"]) | |
except OverflowError: | |
perplexity = float("inf") | |
metrics["perplexity"] = perplexity | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
# Create model card | |
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args) | |