Spaces:
Running
Running
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team. | |
# | |
# This code is inspired by the HuggingFace's TRL library. | |
# https://github.com/huggingface/trl/blob/v0.8.0/trl/trainer/dpo_trainer.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import warnings | |
from collections import defaultdict | |
from contextlib import nullcontext | |
from types import MethodType | |
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
from transformers import Trainer | |
from trl import DPOTrainer | |
from trl.trainer import disable_dropout_in_model | |
from ...extras.constants import IGNORE_INDEX | |
from ..trainer_utils import convert_pissa_adapter, create_custom_optimzer, create_custom_scheduler, get_batch_logps | |
if TYPE_CHECKING: | |
from transformers import PreTrainedModel, ProcessorMixin | |
from ...hparams import FinetuningArguments | |
class CustomDPOTrainer(DPOTrainer): | |
def __init__( | |
self, | |
model: Union["PreTrainedModel", torch.nn.Module], | |
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]], | |
finetuning_args: "FinetuningArguments", | |
processor: Optional["ProcessorMixin"], | |
disable_dropout: bool = True, | |
**kwargs, | |
): | |
if disable_dropout: | |
disable_dropout_in_model(model) | |
if ref_model is not None: | |
disable_dropout_in_model(ref_model) | |
self.finetuning_args = finetuning_args | |
self.processor = processor | |
self.reference_free = False | |
self.use_dpo_data_collator = True # hack to avoid warning | |
self.generate_during_eval = False # disable at evaluation | |
self.label_pad_token_id = IGNORE_INDEX | |
self.padding_value = 0 | |
self.is_encoder_decoder = model.config.is_encoder_decoder | |
self.precompute_ref_log_probs = False | |
self._precomputed_train_ref_log_probs = False | |
self._precomputed_eval_ref_log_probs = False | |
self._peft_has_been_casted_to_bf16 = False | |
self.ref_model = ref_model | |
self._stored_metrics = defaultdict(lambda: defaultdict(list)) | |
# dpo hyperparams | |
self.beta = finetuning_args.pref_beta | |
self.loss_type = finetuning_args.pref_loss | |
self.ftx_gamma = finetuning_args.pref_ftx | |
self.label_smoothing = finetuning_args.dpo_label_smoothing | |
self.simpo_gamma = finetuning_args.simpo_gamma | |
Trainer.__init__(self, model=model, **kwargs) | |
if not hasattr(self, "accelerator"): | |
raise AttributeError("Please update `transformers`.") | |
warnings.simplefilter("ignore") # remove gc warnings on ref model | |
if ref_model is not None: | |
if self.is_deepspeed_enabled: | |
if not ( | |
getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False) | |
): # quantized models are already set on the correct device | |
self.ref_model = self._prepare_deepspeed(self.ref_model) | |
else: | |
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) | |
self.ref_model.eval() | |
if finetuning_args.pissa_convert: | |
self.save_model(os.path.join(self.args.output_dir, "pissa_init")) | |
if finetuning_args.use_badam: | |
from badam import clip_grad_norm_for_sparse_tensor | |
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator) | |
def create_optimizer(self) -> "torch.optim.Optimizer": | |
if self.optimizer is None: | |
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args) | |
return super().create_optimizer() | |
def create_scheduler( | |
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None | |
) -> "torch.optim.lr_scheduler.LRScheduler": | |
create_custom_scheduler(self.args, num_training_steps, optimizer) | |
return super().create_scheduler(num_training_steps, optimizer) | |
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None: | |
super()._save(output_dir, state_dict) | |
output_dir = output_dir if output_dir is not None else self.args.output_dir | |
if self.finetuning_args.pissa_convert: | |
convert_pissa_adapter(output_dir, state_dict, self.accelerator, self.model, self.args) | |
if self.processor is not None: | |
getattr(self.processor, "image_processor").save_pretrained(output_dir) | |
def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor": | |
r""" | |
Computes ORPO's odds ratio (OR) loss for batched log probabilities of the policy model. | |
""" | |
log_odds = (chosen_logps - rejected_logps) - ( | |
torch.log1p(-torch.exp(chosen_logps)) - torch.log1p(-torch.exp(rejected_logps)) | |
) | |
sft_loss = -chosen_logps | |
odds_ratio_loss = -F.logsigmoid(log_odds) | |
orpo_loss = sft_loss + self.beta * odds_ratio_loss | |
return orpo_loss | |
def simpo_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor": | |
r""" | |
Computes SimPO loss for batched log probabilities of the policy model. | |
""" | |
pi_logratios = chosen_logps - rejected_logps | |
gamma_logratios = self.simpo_gamma / self.beta | |
logits = pi_logratios - gamma_logratios | |
simpo_loss = -F.logsigmoid(self.beta * logits) | |
return simpo_loss | |
def compute_preference_loss( | |
self, | |
policy_chosen_logps: "torch.Tensor", | |
policy_rejected_logps: "torch.Tensor", | |
reference_chosen_logps: Optional["torch.Tensor"], | |
reference_rejected_logps: Optional["torch.Tensor"], | |
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]: | |
r""" | |
Computes loss for preference learning. | |
""" | |
if not self.finetuning_args.use_ref_model: | |
if self.loss_type == "orpo": | |
losses = self.odds_ratio_loss(policy_chosen_logps, policy_rejected_logps) | |
elif self.loss_type == "simpo": | |
losses = self.simpo_loss(policy_chosen_logps, policy_rejected_logps) | |
else: | |
raise NotImplementedError("Unknown loss type: {}.".format(self.loss_type)) | |
chosen_rewards = self.beta * policy_chosen_logps.to(self.accelerator.device).detach() | |
rejected_rewards = self.beta * policy_rejected_logps.to(self.accelerator.device).detach() | |
else: | |
losses, chosen_rewards, rejected_rewards = self.dpo_loss( | |
policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps | |
) | |
return losses, chosen_rewards, rejected_rewards | |
def concatenated_forward( | |
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"] | |
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]: | |
r""" | |
Computes the sum log probabilities of the labels under given logits if loss_type is not IPO, ORPO or SimPO. | |
Otherwise the average log probabilities. | |
""" | |
if self.finetuning_args.use_ref_model: | |
batch = {k: v.detach().clone() for k, v in batch.items()} # avoid error | |
all_logits: "torch.Tensor" = model(**batch, return_dict=True, use_cache=False).logits.to(torch.float32) | |
all_logps, valid_length = get_batch_logps(logits=all_logits, labels=batch["labels"]) | |
if self.loss_type in ["ipo", "orpo", "simpo"]: | |
all_logps = all_logps / valid_length | |
batch_size = batch["input_ids"].size(0) // 2 | |
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0) | |
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0) | |
chosen_length, _ = valid_length.split(batch_size, dim=0) | |
return chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_logps / chosen_length | |
def compute_reference_log_probs( | |
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"] | |
) -> Tuple[Optional["torch.Tensor"], Optional["torch.Tensor"]]: | |
r""" | |
Computes log probabilities of the reference model. | |
""" | |
if not self.finetuning_args.use_ref_model: | |
return None, None | |
if self.ref_model is None: | |
ref_model = model | |
ref_context = self.accelerator.unwrap_model(model).disable_adapter() | |
else: | |
ref_model = self.ref_model | |
ref_context = nullcontext() | |
with torch.no_grad(), ref_context: | |
reference_chosen_logps, reference_rejected_logps, *_ = self.concatenated_forward(ref_model, batch) | |
return reference_chosen_logps, reference_rejected_logps | |
def get_batch_loss_metrics( | |
self, | |
model: "PreTrainedModel", | |
batch: Dict[str, "torch.Tensor"], | |
train_eval: Literal["train", "eval"] = "train", | |
) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]: | |
r""" | |
Computes the DPO loss and other metrics for the given batch of inputs for train or test. | |
""" | |
metrics = {} | |
( | |
policy_chosen_logps, | |
policy_rejected_logps, | |
policy_chosen_logits, | |
policy_rejected_logits, | |
policy_chosen_logps_avg, | |
) = self.concatenated_forward(model, batch) | |
reference_chosen_logps, reference_rejected_logps = self.compute_reference_log_probs(model, batch) | |
losses, chosen_rewards, rejected_rewards = self.compute_preference_loss( | |
policy_chosen_logps, | |
policy_rejected_logps, | |
reference_chosen_logps, | |
reference_rejected_logps, | |
) | |
sft_loss = -policy_chosen_logps_avg | |
if self.ftx_gamma > 1e-6: | |
losses += self.ftx_gamma * sft_loss | |
reward_accuracies = (chosen_rewards > rejected_rewards).float() | |
prefix = "eval_" if train_eval == "eval" else "" | |
metrics["{}rewards/chosen".format(prefix)] = chosen_rewards.mean().cpu() | |
metrics["{}rewards/rejected".format(prefix)] = rejected_rewards.mean().cpu() | |
metrics["{}rewards/accuracies".format(prefix)] = reward_accuracies.mean().cpu() | |
metrics["{}rewards/margins".format(prefix)] = (chosen_rewards - rejected_rewards).mean().cpu() | |
metrics["{}logps/rejected".format(prefix)] = policy_rejected_logps.detach().mean().cpu() | |
metrics["{}logps/chosen".format(prefix)] = policy_chosen_logps.detach().mean().cpu() | |
metrics["{}logits/rejected".format(prefix)] = policy_rejected_logits.detach().mean().cpu() | |
metrics["{}logits/chosen".format(prefix)] = policy_chosen_logits.detach().mean().cpu() | |
if self.loss_type == "orpo": | |
metrics["{}sft_loss".format(prefix)] = sft_loss.detach().mean().cpu() | |
metrics["{}odds_ratio_loss".format(prefix)] = ((losses - sft_loss) / self.beta).detach().mean().cpu() | |
return losses.mean(), metrics | |