Spaces:
Running
Running
# Copyright 2024 EleutherAI, HuggingFace Inc., Yukang Chen, and the LlamaFactory team. | |
# | |
# This code is based on the EleutherAI's GPT-NeoX and the HuggingFace's Transformers libraries. | |
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py | |
# This code is also inspired by the original LongLoRA implementation. | |
# https://github.com/dvlab-research/LongLoRA/blob/main/llama_attn_replace.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import TYPE_CHECKING, Optional, Tuple | |
import torch | |
import torch.nn as nn | |
from transformers.models.llama.modeling_llama import ( | |
Cache, | |
LlamaAttention, | |
LlamaFlashAttention2, | |
LlamaSdpaAttention, | |
apply_rotary_pos_emb, | |
repeat_kv, | |
) | |
from transformers.utils import logging | |
from transformers.utils.versions import require_version | |
from ...extras.constants import SUPPORTED_CLASS_FOR_S2ATTN | |
from ...extras.logging import get_logger | |
if TYPE_CHECKING: | |
from transformers import PretrainedConfig | |
from ...hparams import ModelArguments | |
logger = logging.get_logger(__name__) | |
# Modified from: | |
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py | |
def llama_attention_forward( | |
self: "LlamaAttention", | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional["Cache"] = None, | |
output_attentions: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
bsz, q_len, _ = hidden_states.size() | |
query_states: "torch.Tensor" = self.q_proj(hidden_states) | |
key_states: "torch.Tensor" = self.k_proj(hidden_states) | |
value_states: "torch.Tensor" = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
cos, sin = self.rotary_emb(value_states, position_ids) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
past_key_value = getattr(self, "past_key_value", past_key_value) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
if getattr(self.config, "group_size_ratio", None) and self.training: # shift | |
groupsz = int(q_len * getattr(self.config, "group_size_ratio")) | |
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz) | |
num_groups = q_len // groupsz | |
def shift(state: torch.Tensor) -> torch.Tensor: | |
state = state.transpose(1, 2) # output: (bsz, seq_len, n_heads, head_dim) | |
state = torch.cat( | |
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)), | |
dim=2, | |
) | |
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2) | |
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states) | |
if attention_mask is not None: | |
attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
attn_weights = attn_weights + causal_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) # (bsz, :, seq_len, :) or (bsz * n_group, :, groupsz, :) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back | |
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim) | |
attn_output = torch.cat( | |
( | |
attn_output[:, :, : self.num_heads // 2], | |
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1), | |
), | |
dim=2, | |
) | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
# Modified from: | |
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py | |
def llama_flash_attention_2_forward( | |
self: "LlamaFlashAttention2", | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional["Cache"] = None, | |
output_attentions: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
# LlamaFlashAttention2 attention does not support output_attentions | |
output_attentions = False | |
bsz, q_len, _ = hidden_states.size() | |
query_states: "torch.Tensor" = self.q_proj(hidden_states) | |
key_states: "torch.Tensor" = self.k_proj(hidden_states) | |
value_states: "torch.Tensor" = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
cos, sin = self.rotary_emb(value_states, position_ids) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
past_key_value = getattr(self, "past_key_value", past_key_value) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
# FlashAttention requires the input to have the shape (bsz, seq_len, n_heads, head_dim) | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
dropout_rate = self.attention_dropout if self.training else 0.0 | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once("The input hidden states seems to be silently casted in float32.") | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
if getattr(self.config, "group_size_ratio", None) and self.training: # shift | |
groupsz = int(q_len * getattr(self.config, "group_size_ratio")) | |
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz) | |
num_groups = q_len // groupsz | |
def shift(state: torch.Tensor) -> torch.Tensor: | |
state = torch.cat( | |
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)), | |
dim=2, | |
) | |
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim) | |
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states) | |
if attention_mask is not None: | |
attention_mask = attention_mask[:, :groupsz].repeat(num_groups, 1) | |
attn_output: torch.Tensor = self._flash_attention_forward( | |
query_states, key_states, value_states, attention_mask, query_states.size(1), dropout=dropout_rate | |
) | |
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back | |
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim) | |
attn_output = torch.cat( | |
( | |
attn_output[:, :, : self.num_heads // 2], | |
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1), | |
), | |
dim=2, | |
) | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
# Modified from: | |
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py | |
def llama_sdpa_attention_forward( | |
self: "LlamaSdpaAttention", | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional["Cache"] = None, | |
output_attentions: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
if output_attentions: | |
logger.warning_once("SDPA does not support `output_attentions=True`. Falling back to the vanilla attention") | |
return llama_attention_forward( | |
self, | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
cache_position=cache_position, | |
**kwargs, | |
) | |
bsz, q_len, _ = hidden_states.size() | |
query_states: "torch.Tensor" = self.q_proj(hidden_states) | |
key_states: "torch.Tensor" = self.k_proj(hidden_states) | |
value_states: "torch.Tensor" = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
cos, sin = self.rotary_emb(value_states, position_ids) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
if getattr(self.config, "group_size_ratio", None) and self.training: # shift | |
groupsz = int(q_len * getattr(self.config, "group_size_ratio")) | |
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz) | |
num_groups = q_len // groupsz | |
def shift(state: torch.Tensor) -> torch.Tensor: | |
state = state.transpose(1, 2) # output: (bsz, seq_len, n_heads, head_dim) | |
state = torch.cat( | |
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)), | |
dim=2, | |
) | |
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2) | |
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states) | |
if attention_mask is not None: | |
attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1) | |
causal_mask = attention_mask | |
if attention_mask is not None: | |
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] | |
if query_states.device.type == "cuda" and causal_mask is not None: | |
query_states = query_states.contiguous() | |
key_states = key_states.contiguous() | |
value_states = value_states.contiguous() | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=causal_mask, | |
dropout_p=self.attention_dropout if self.training else 0.0, | |
is_causal=causal_mask is None and q_len > 1, | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back | |
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim) | |
attn_output = torch.cat( | |
( | |
attn_output[:, :, : self.num_heads // 2], | |
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1), | |
), | |
dim=2, | |
) | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
return attn_output, None, past_key_value | |
def _apply_llama_patch() -> None: | |
require_version("transformers==4.41.2", "To fix: pip install transformers==4.41.2") | |
LlamaAttention.forward = llama_attention_forward | |
LlamaFlashAttention2.forward = llama_flash_attention_2_forward | |
LlamaSdpaAttention.forward = llama_sdpa_attention_forward | |
def configure_longlora(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: | |
if not is_trainable or not model_args.shift_attn: | |
return | |
logger = get_logger(__name__) | |
if getattr(config, "model_type", None) in SUPPORTED_CLASS_FOR_S2ATTN: | |
setattr(config, "group_size_ratio", 0.25) | |
_apply_llama_patch() | |
logger.info("Using shift short attention with group_size_ratio=1/4.") | |
else: | |
logger.warning("Current model does not support shift short attention.") | |