# Copyright 2024 EleutherAI, HuggingFace Inc., Yukang Chen, and the LlamaFactory team. # # This code is based on the EleutherAI's GPT-NeoX and the HuggingFace's Transformers libraries. # https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py # This code is also inspired by the original LongLoRA implementation. # https://github.com/dvlab-research/LongLoRA/blob/main/llama_attn_replace.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import TYPE_CHECKING, Optional, Tuple import torch import torch.nn as nn from transformers.models.llama.modeling_llama import ( Cache, LlamaAttention, LlamaFlashAttention2, LlamaSdpaAttention, apply_rotary_pos_emb, repeat_kv, ) from transformers.utils import logging from transformers.utils.versions import require_version from ...extras.constants import SUPPORTED_CLASS_FOR_S2ATTN from ...extras.logging import get_logger if TYPE_CHECKING: from transformers import PretrainedConfig from ...hparams import ModelArguments logger = logging.get_logger(__name__) # Modified from: # https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py def llama_attention_forward( self: "LlamaAttention", hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional["Cache"] = None, output_attentions: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states: "torch.Tensor" = self.q_proj(hidden_states) key_states: "torch.Tensor" = self.k_proj(hidden_states) value_states: "torch.Tensor" = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) past_key_value = getattr(self, "past_key_value", past_key_value) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) if getattr(self.config, "group_size_ratio", None) and self.training: # shift groupsz = int(q_len * getattr(self.config, "group_size_ratio")) assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz) num_groups = q_len // groupsz def shift(state: torch.Tensor) -> torch.Tensor: state = state.transpose(1, 2) # output: (bsz, seq_len, n_heads, head_dim) state = torch.cat( (state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)), dim=2, ) return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2) query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states) if attention_mask is not None: attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) # (bsz, :, seq_len, :) or (bsz * n_group, :, groupsz, :) attn_output = attn_output.transpose(1, 2).contiguous() if getattr(self.config, "group_size_ratio", None) and self.training: # shift back attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim) attn_output = torch.cat( ( attn_output[:, :, : self.num_heads // 2], attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1), ), dim=2, ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # Modified from: # https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py def llama_flash_attention_2_forward( self: "LlamaFlashAttention2", hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional["Cache"] = None, output_attentions: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # LlamaFlashAttention2 attention does not support output_attentions output_attentions = False bsz, q_len, _ = hidden_states.size() query_states: "torch.Tensor" = self.q_proj(hidden_states) key_states: "torch.Tensor" = self.k_proj(hidden_states) value_states: "torch.Tensor" = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) past_key_value = getattr(self, "past_key_value", past_key_value) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) # FlashAttention requires the input to have the shape (bsz, seq_len, n_heads, head_dim) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attention_dropout if self.training else 0.0 input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once("The input hidden states seems to be silently casted in float32.") query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) if getattr(self.config, "group_size_ratio", None) and self.training: # shift groupsz = int(q_len * getattr(self.config, "group_size_ratio")) assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz) num_groups = q_len // groupsz def shift(state: torch.Tensor) -> torch.Tensor: state = torch.cat( (state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)), dim=2, ) return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim) query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states) if attention_mask is not None: attention_mask = attention_mask[:, :groupsz].repeat(num_groups, 1) attn_output: torch.Tensor = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, query_states.size(1), dropout=dropout_rate ) if getattr(self.config, "group_size_ratio", None) and self.training: # shift back attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim) attn_output = torch.cat( ( attn_output[:, :, : self.num_heads // 2], attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1), ), dim=2, ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # Modified from: # https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py def llama_sdpa_attention_forward( self: "LlamaSdpaAttention", hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional["Cache"] = None, output_attentions: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: logger.warning_once("SDPA does not support `output_attentions=True`. Falling back to the vanilla attention") return llama_attention_forward( self, hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, cache_position=cache_position, **kwargs, ) bsz, q_len, _ = hidden_states.size() query_states: "torch.Tensor" = self.q_proj(hidden_states) key_states: "torch.Tensor" = self.k_proj(hidden_states) value_states: "torch.Tensor" = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) if getattr(self.config, "group_size_ratio", None) and self.training: # shift groupsz = int(q_len * getattr(self.config, "group_size_ratio")) assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz) num_groups = q_len // groupsz def shift(state: torch.Tensor) -> torch.Tensor: state = state.transpose(1, 2) # output: (bsz, seq_len, n_heads, head_dim) state = torch.cat( (state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)), dim=2, ) return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2) query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states) if attention_mask is not None: attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1) causal_mask = attention_mask if attention_mask is not None: causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] if query_states.device.type == "cuda" and causal_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.attention_dropout if self.training else 0.0, is_causal=causal_mask is None and q_len > 1, ) attn_output = attn_output.transpose(1, 2).contiguous() if getattr(self.config, "group_size_ratio", None) and self.training: # shift back attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim) attn_output = torch.cat( ( attn_output[:, :, : self.num_heads // 2], attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1), ), dim=2, ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value def _apply_llama_patch() -> None: require_version("transformers==4.41.2", "To fix: pip install transformers==4.41.2") LlamaAttention.forward = llama_attention_forward LlamaFlashAttention2.forward = llama_flash_attention_2_forward LlamaSdpaAttention.forward = llama_sdpa_attention_forward def configure_longlora(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: if not is_trainable or not model_args.shift_attn: return logger = get_logger(__name__) if getattr(config, "model_type", None) in SUPPORTED_CLASS_FOR_S2ATTN: setattr(config, "group_size_ratio", 0.25) _apply_llama_patch() logger.info("Using shift short attention with group_size_ratio=1/4.") else: logger.warning("Current model does not support shift short attention.")