Justinrune's picture
Upload folder using huggingface_hub
2852136 verified
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import os
from typing import TYPE_CHECKING, Dict, Tuple
import torch
from peft import PeftModel
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList, PreTrainedModel
from transformers.utils import (
SAFE_WEIGHTS_NAME,
WEIGHTS_NAME,
is_safetensors_available,
is_torch_bf16_gpu_available,
is_torch_cuda_available,
is_torch_mps_available,
is_torch_npu_available,
is_torch_xpu_available,
)
from transformers.utils.versions import require_version
from .constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
from .logging import get_logger
if is_safetensors_available():
from safetensors import safe_open
from safetensors.torch import save_file
_is_fp16_available = is_torch_npu_available() or is_torch_cuda_available()
try:
_is_bf16_available = is_torch_bf16_gpu_available()
except Exception:
_is_bf16_available = False
if TYPE_CHECKING:
from trl import AutoModelForCausalLMWithValueHead
from ..hparams import ModelArguments
logger = get_logger(__name__)
class AverageMeter:
r"""
Computes and stores the average and current value.
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def check_dependencies() -> None:
if os.environ.get("DISABLE_VERSION_CHECK", "0").lower() in ["true", "1"]:
logger.warning("Version checking has been disabled, may lead to unexpected behaviors.")
else:
require_version("transformers>=4.41.2", "To fix: pip install transformers>=4.41.2")
require_version("datasets>=2.16.0", "To fix: pip install datasets>=2.16.0")
require_version("accelerate>=0.30.1", "To fix: pip install accelerate>=0.30.1")
require_version("peft>=0.11.1", "To fix: pip install peft>=0.11.1")
require_version("trl>=0.8.6", "To fix: pip install trl>=0.8.6")
def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
r"""
Returns the number of trainable parameters and number of all parameters in the model.
"""
trainable_params, all_param = 0, 0
for param in model.parameters():
num_params = param.numel()
# if using DS Zero 3 and the weights are initialized empty
if num_params == 0 and hasattr(param, "ds_numel"):
num_params = param.ds_numel
# Due to the design of 4bit linear layers from bitsandbytes, multiply the number of parameters by 2
if param.__class__.__name__ == "Params4bit":
if hasattr(param, "quant_storage") and hasattr(param.quant_storage, "itemsize"):
num_bytes = param.quant_storage.itemsize
elif hasattr(param, "element_size"): # for older pytorch version
num_bytes = param.element_size()
else:
num_bytes = 1
num_params = num_params * 2 * num_bytes
all_param += num_params
if param.requires_grad:
trainable_params += num_params
return trainable_params, all_param
def fix_valuehead_checkpoint(
model: "AutoModelForCausalLMWithValueHead", output_dir: str, safe_serialization: bool
) -> None:
r"""
The model is already unwrapped.
There are three cases:
1. full tuning without ds_zero3: state_dict = {"model.layers.*": ..., "v_head.summary.*": ...}
2. lora tuning without ds_zero3: state_dict = {"v_head.summary.*": ...}
3. under deepspeed zero3: state_dict = {"pretrained_model.model.layers.*": ..., "v_head.summary.*": ...}
We assume `stage3_gather_16bit_weights_on_model_save=true`.
"""
if not isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)):
return
if safe_serialization:
path_to_checkpoint = os.path.join(output_dir, SAFE_WEIGHTS_NAME)
with safe_open(path_to_checkpoint, framework="pt", device="cpu") as f:
state_dict: Dict[str, torch.Tensor] = {key: f.get_tensor(key) for key in f.keys()}
else:
path_to_checkpoint = os.path.join(output_dir, WEIGHTS_NAME)
state_dict: Dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu")
decoder_state_dict = {}
v_head_state_dict = {}
for name, param in state_dict.items():
if name.startswith("v_head."):
v_head_state_dict[name] = param
else:
decoder_state_dict[name.replace("pretrained_model.", "")] = param
os.remove(path_to_checkpoint)
model.pretrained_model.save_pretrained(
output_dir, state_dict=decoder_state_dict or None, safe_serialization=safe_serialization
)
if safe_serialization:
save_file(v_head_state_dict, os.path.join(output_dir, V_HEAD_SAFE_WEIGHTS_NAME), metadata={"format": "pt"})
else:
torch.save(v_head_state_dict, os.path.join(output_dir, V_HEAD_WEIGHTS_NAME))
logger.info("Value head model saved at: {}".format(output_dir))
def get_current_device() -> torch.device:
r"""
Gets the current available device.
"""
if is_torch_xpu_available():
device = "xpu:{}".format(os.environ.get("LOCAL_RANK", "0"))
elif is_torch_npu_available():
device = "npu:{}".format(os.environ.get("LOCAL_RANK", "0"))
elif is_torch_mps_available():
device = "mps:{}".format(os.environ.get("LOCAL_RANK", "0"))
elif is_torch_cuda_available():
device = "cuda:{}".format(os.environ.get("LOCAL_RANK", "0"))
else:
device = "cpu"
return torch.device(device)
def get_device_count() -> int:
r"""
Gets the number of available GPU or NPU devices.
"""
if is_torch_npu_available():
return torch.npu.device_count()
elif is_torch_cuda_available():
return torch.cuda.device_count()
else:
return 0
def get_logits_processor() -> "LogitsProcessorList":
r"""
Gets logits processor that removes NaN and Inf logits.
"""
logits_processor = LogitsProcessorList()
logits_processor.append(InfNanRemoveLogitsProcessor())
return logits_processor
def infer_optim_dtype(model_dtype: torch.dtype) -> torch.dtype:
r"""
Infers the optimal dtype according to the model_dtype and device compatibility.
"""
if _is_bf16_available and model_dtype == torch.bfloat16:
return torch.bfloat16
elif _is_fp16_available:
return torch.float16
else:
return torch.float32
def is_gpu_or_npu_available() -> bool:
r"""
Checks if the GPU or NPU is available.
"""
return is_torch_npu_available() or is_torch_cuda_available()
def has_tokenized_data(path: os.PathLike) -> bool:
r"""
Checks if the path has a tokenized dataset.
"""
return os.path.isdir(path) and len(os.listdir(path)) > 0
def torch_gc() -> None:
r"""
Collects GPU or NPU memory.
"""
gc.collect()
if is_torch_xpu_available():
torch.xpu.empty_cache()
elif is_torch_npu_available():
torch.npu.empty_cache()
elif is_torch_mps_available():
torch.mps.empty_cache()
elif is_torch_cuda_available():
torch.cuda.empty_cache()
def try_download_model_from_ms(model_args: "ModelArguments") -> str:
if not use_modelscope() or os.path.exists(model_args.model_name_or_path):
return model_args.model_name_or_path
try:
from modelscope import snapshot_download
revision = "master" if model_args.model_revision == "main" else model_args.model_revision
return snapshot_download(model_args.model_name_or_path, revision=revision, cache_dir=model_args.cache_dir)
except ImportError:
raise ImportError("Please install modelscope via `pip install modelscope -U`")
def use_modelscope() -> bool:
return os.environ.get("USE_MODELSCOPE_HUB", "0").lower() in ["true", "1"]