File size: 13,718 Bytes
2852136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import asyncio
import concurrent.futures
import os
from threading import Thread
from typing import TYPE_CHECKING, Any, AsyncGenerator, Callable, Dict, List, Optional, Sequence, Tuple, Union

import torch
from transformers import GenerationConfig, TextIteratorStreamer

from ..data import get_template_and_fix_tokenizer
from ..extras.logging import get_logger
from ..extras.misc import get_logits_processor
from ..model import load_model, load_tokenizer
from .base_engine import BaseEngine, Response


if TYPE_CHECKING:
    from numpy.typing import NDArray
    from transformers import PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
    from transformers.image_processing_utils import BaseImageProcessor
    from trl import PreTrainedModelWrapper

    from ..data import Template
    from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments


logger = get_logger(__name__)


class HuggingfaceEngine(BaseEngine):
    def __init__(
        self,
        model_args: "ModelArguments",
        data_args: "DataArguments",
        finetuning_args: "FinetuningArguments",
        generating_args: "GeneratingArguments",
    ) -> None:
        self.can_generate = finetuning_args.stage == "sft"
        tokenizer_module = load_tokenizer(model_args)
        self.tokenizer = tokenizer_module["tokenizer"]
        self.processor = tokenizer_module["processor"]
        self.tokenizer.padding_side = "left" if self.can_generate else "right"
        self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
        self.model = load_model(
            self.tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
        )  # must after fixing tokenizer to resize vocab
        self.generating_args = generating_args.to_dict()

    @staticmethod
    def _process_args(
        model: "PreTrainedModel",
        tokenizer: "PreTrainedTokenizer",
        processor: Optional["ProcessorMixin"],
        template: "Template",
        generating_args: Dict[str, Any],
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
        image: Optional["NDArray"] = None,
        input_kwargs: Optional[Dict[str, Any]] = {},
    ) -> Tuple[Dict[str, Any], int]:
        if (
            processor is not None
            and image is not None
            and not hasattr(processor, "image_seq_length")
            and template.image_token not in messages[0]["content"]
        ):  # llava-like models
            messages[0]["content"] = template.image_token + messages[0]["content"]

        paired_messages = messages + [{"role": "assistant", "content": ""}]
        system = system or generating_args["default_system"]
        pixel_values = None
        prompt_ids, _ = template.encode_oneturn(
            tokenizer=tokenizer, messages=paired_messages, system=system, tools=tools
        )
        if processor is not None and image is not None:  # add image features
            image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
            batch_feature = image_processor(image, return_tensors="pt")
            pixel_values = batch_feature.to(model.device)["pixel_values"]  # shape (B, C, H, W)
            if hasattr(processor, "image_seq_length"):  # paligemma models
                image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
                prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids

        prompt_length = len(prompt_ids)
        inputs = torch.tensor([prompt_ids], device=model.device)
        attention_mask = torch.ones_like(inputs, dtype=torch.bool)

        do_sample: Optional[bool] = input_kwargs.pop("do_sample", None)
        temperature: Optional[float] = input_kwargs.pop("temperature", None)
        top_p: Optional[float] = input_kwargs.pop("top_p", None)
        top_k: Optional[float] = input_kwargs.pop("top_k", None)
        num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1)
        repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None)
        length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None)
        max_length: Optional[int] = input_kwargs.pop("max_length", None)
        max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
        stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None)

        if stop is not None:
            logger.warning("Stop parameter is not supported in Huggingface engine yet.")

        generating_args = generating_args.copy()
        generating_args.update(
            dict(
                do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
                temperature=temperature if temperature is not None else generating_args["temperature"],
                top_p=top_p if top_p is not None else generating_args["top_p"],
                top_k=top_k if top_k is not None else generating_args["top_k"],
                num_return_sequences=num_return_sequences,
                repetition_penalty=repetition_penalty
                if repetition_penalty is not None
                else generating_args["repetition_penalty"],
                length_penalty=length_penalty if length_penalty is not None else generating_args["length_penalty"],
                eos_token_id=[tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids,
                pad_token_id=tokenizer.pad_token_id,
            )
        )

        if isinstance(num_return_sequences, int) and num_return_sequences > 1:  # do_sample needs temperature > 0
            generating_args["do_sample"] = True
            generating_args["temperature"] = generating_args["temperature"] or 1.0

        if not generating_args["temperature"]:
            generating_args["do_sample"] = False

        if not generating_args["do_sample"]:
            generating_args.pop("temperature", None)
            generating_args.pop("top_p", None)

        if max_length:
            generating_args.pop("max_new_tokens", None)
            generating_args["max_length"] = max_length

        if max_new_tokens:
            generating_args.pop("max_length", None)
            generating_args["max_new_tokens"] = max_new_tokens

        gen_kwargs = dict(
            inputs=inputs,
            attention_mask=attention_mask,
            generation_config=GenerationConfig(**generating_args),
            logits_processor=get_logits_processor(),
        )

        if pixel_values is not None:
            gen_kwargs["pixel_values"] = pixel_values

        return gen_kwargs, prompt_length

    @staticmethod
    @torch.inference_mode()
    def _chat(
        model: "PreTrainedModel",
        tokenizer: "PreTrainedTokenizer",
        processor: Optional["ProcessorMixin"],
        template: "Template",
        generating_args: Dict[str, Any],
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
        image: Optional["NDArray"] = None,
        input_kwargs: Optional[Dict[str, Any]] = {},
    ) -> List["Response"]:
        gen_kwargs, prompt_length = HuggingfaceEngine._process_args(
            model, tokenizer, processor, template, generating_args, messages, system, tools, image, input_kwargs
        )
        generate_output = model.generate(**gen_kwargs)
        response_ids = generate_output[:, prompt_length:]
        response = tokenizer.batch_decode(response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
        results = []
        for i in range(len(response)):
            eos_index = (response_ids[i] == tokenizer.eos_token_id).nonzero()
            response_length = (eos_index[0].item() + 1) if len(eos_index) else len(response_ids[i])
            results.append(
                Response(
                    response_text=response[i],
                    response_length=response_length,
                    prompt_length=prompt_length,
                    finish_reason="stop" if len(eos_index) else "length",
                )
            )

        return results

    @staticmethod
    @torch.inference_mode()
    def _stream_chat(
        model: "PreTrainedModel",
        tokenizer: "PreTrainedTokenizer",
        processor: Optional["ProcessorMixin"],
        template: "Template",
        generating_args: Dict[str, Any],
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
        image: Optional["NDArray"] = None,
        input_kwargs: Optional[Dict[str, Any]] = {},
    ) -> Callable[[], str]:
        gen_kwargs, _ = HuggingfaceEngine._process_args(
            model, tokenizer, processor, template, generating_args, messages, system, tools, image, input_kwargs
        )
        streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
        gen_kwargs["streamer"] = streamer
        thread = Thread(target=model.generate, kwargs=gen_kwargs, daemon=True)
        thread.start()

        def stream():
            try:
                return streamer.__next__()
            except StopIteration:
                raise StopAsyncIteration()

        return stream

    @staticmethod
    @torch.inference_mode()
    def _get_scores(
        model: "PreTrainedModelWrapper",
        tokenizer: "PreTrainedTokenizer",
        batch_input: List[str],
        input_kwargs: Optional[Dict[str, Any]] = {},
    ) -> List[float]:
        max_length = input_kwargs.pop("max_length", None)
        device = getattr(model.pretrained_model, "device", "cuda")
        inputs = tokenizer(
            batch_input,
            padding=True,
            truncation=True,
            max_length=max_length or getattr(model.config, "max_position_embeddings", 1024),
            return_tensors="pt",
            add_special_tokens=True,
        ).to(device)

        input_ids: torch.Tensor = inputs["input_ids"]
        _, _, values = model(**inputs, output_hidden_states=True, return_dict=True)

        if getattr(model.config, "model_type", None) == "chatglm":
            values = torch.transpose(values, 0, 1)

        scores = []
        for i in range(input_ids.size(0)):
            end_indexes = (input_ids[i] != tokenizer.pad_token_id).nonzero()
            end_index = end_indexes[-1].item() if len(end_indexes) else 0
            scores.append(values[i, end_index].nan_to_num().item())

        return scores

    async def start(self) -> None:
        self._semaphore = asyncio.Semaphore(int(os.environ.get("MAX_CONCURRENT", 1)))

    async def chat(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
        image: Optional["NDArray"] = None,
        **input_kwargs,
    ) -> List["Response"]:
        if not self.can_generate:
            raise ValueError("The current model does not support `chat`.")

        loop = asyncio.get_running_loop()
        input_args = (
            self.model,
            self.tokenizer,
            self.processor,
            self.template,
            self.generating_args,
            messages,
            system,
            tools,
            image,
            input_kwargs,
        )
        async with self._semaphore:
            with concurrent.futures.ThreadPoolExecutor() as pool:
                return await loop.run_in_executor(pool, self._chat, *input_args)

    async def stream_chat(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
        image: Optional["NDArray"] = None,
        **input_kwargs,
    ) -> AsyncGenerator[str, None]:
        if not self.can_generate:
            raise ValueError("The current model does not support `stream_chat`.")

        loop = asyncio.get_running_loop()
        input_args = (
            self.model,
            self.tokenizer,
            self.processor,
            self.template,
            self.generating_args,
            messages,
            system,
            tools,
            image,
            input_kwargs,
        )
        async with self._semaphore:
            with concurrent.futures.ThreadPoolExecutor() as pool:
                stream = self._stream_chat(*input_args)
                while True:
                    try:
                        yield await loop.run_in_executor(pool, stream)
                    except StopAsyncIteration:
                        break

    async def get_scores(
        self,
        batch_input: List[str],
        **input_kwargs,
    ) -> List[float]:
        if self.can_generate:
            raise ValueError("Cannot get scores using an auto-regressive model.")

        loop = asyncio.get_running_loop()
        input_args = (self.model, self.tokenizer, batch_input, input_kwargs)
        async with self._semaphore:
            with concurrent.futures.ThreadPoolExecutor() as pool:
                return await loop.run_in_executor(pool, self._get_scores, *input_args)