Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from datasets import load_dataset | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
#Update: Using a new base model | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
dataset = load_dataset("JustKiddo/KiddosVault") | |
# Load the tokenizer and model for token display | |
tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") #Google's T5 Model | |
model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-small") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
#My custom token generator | |
def generate_tokens(text): | |
input = tokenizer(text, return_tensors="pt") | |
output = model.generate(**input) | |
input_ids = input["input_ids"].tolist()[0] | |
output_ids = output.tolist()[0] | |
formatted_output = [format(x, 'd') for x in output_ids] | |
input_tokens_str = tokenizer.convert_ids_to_tokens(input_ids) | |
#output_tokens_str = tokenizer.convert_tokens_to_ids(output_ids) | |
return " ".join(input_tokens_str), " ".join(formatted_output) | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
#chatInterface = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a professional Mental Healthcare Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=6144, value=6144, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=1, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
#) | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a professional Mental Healthcare Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=6144, value=6144, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=1, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
with gr.Row(): | |
input_text = gr.Textbox(label="Input text") | |
input_tokens = gr.Textbox(label="Input tokens") | |
output_ids = gr.Textbox(label="Output tokens") | |
def update_tokens(input_text): | |
input_tokens_str, output_ids = generate_tokens(input_text) | |
return input_tokens_str, output_ids | |
input_text.change(update_tokens, | |
inputs=input_text, | |
outputs=[input_tokens, output_ids]) | |
if __name__ == "__main__": | |
demo.launch(debug=True) |