Junaid423 commited on
Commit
8d49f35
1 Parent(s): 2afb799

upload pipeline_zero1to3_stable.py

Browse files
Files changed (1) hide show
  1. pipeline_zero1to3_stable.py +870 -0
pipeline_zero1to3_stable.py ADDED
@@ -0,0 +1,870 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A diffuser version implementation of Zero1to3 (https://github.com/cvlab-columbia/zero123), ICCV 2023
2
+ # by Xin Kong
3
+
4
+ import inspect
5
+ import sys
6
+ from typing import Any, Callable, Dict, List, Optional, Union
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ from packaging import version
11
+ from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
12
+ import einops
13
+ from diffusers import AutoencoderKL, UNet2DConditionModel, DiffusionPipeline
14
+ from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
15
+ from diffusers.schedulers import KarrasDiffusionSchedulers
16
+ from diffusers.utils import (
17
+ deprecate,
18
+ is_accelerate_available,
19
+ is_accelerate_version,
20
+ logging,
21
+ replace_example_docstring,
22
+ )
23
+ from diffusers.utils.torch_utils import randn_tensor
24
+ from diffusers.configuration_utils import FrozenDict
25
+ import PIL
26
+ import numpy as np
27
+ import math
28
+ import kornia
29
+ from diffusers.configuration_utils import ConfigMixin
30
+ from diffusers.models.modeling_utils import ModelMixin
31
+
32
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
+ # todo
34
+ EXAMPLE_DOC_STRING = """
35
+ Examples:
36
+ ```py
37
+ >>> import torch
38
+ >>> from diffusers import StableDiffusionPipeline
39
+
40
+ >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
41
+ >>> pipe = pipe.to("cuda")
42
+
43
+ >>> prompt = "a photo of an astronaut riding a horse on mars"
44
+ >>> image = pipe(prompt).images[0]
45
+ ```
46
+ """
47
+
48
+
49
+ class CCProjection(ModelMixin, ConfigMixin):
50
+ def __init__(self, in_channel=772, out_channel=768):
51
+ super().__init__()
52
+ self.in_channel = in_channel
53
+ self.out_channel = out_channel
54
+ self.projection = torch.nn.Linear(in_channel, out_channel)
55
+
56
+ def forward(self, x):
57
+ return self.projection(x)
58
+
59
+
60
+ class Zero1to3StableDiffusionPipeline(DiffusionPipeline):
61
+ r"""
62
+ Pipeline for single view conditioned novel view generation using Zero1to3.
63
+
64
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
65
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
66
+
67
+ Args:
68
+ vae ([`AutoencoderKL`]):
69
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
70
+ image_encoder ([`CLIPVisionModelWithProjection`]):
71
+ Frozen CLIP image-encoder. Stable Diffusion Image Variation uses the vision portion of
72
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection),
73
+ specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
74
+ tokenizer (`CLIPTokenizer`):
75
+ Tokenizer of class
76
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
77
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
78
+ scheduler ([`SchedulerMixin`]):
79
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
80
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
81
+ safety_checker ([`StableDiffusionSafetyChecker`]):
82
+ Classification module that estimates whether generated images could be considered offensive or harmful.
83
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
84
+ feature_extractor ([`CLIPFeatureExtractor`]):
85
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
86
+ """
87
+ _optional_components = ["safety_checker", "feature_extractor"]
88
+
89
+ def __init__(
90
+ self,
91
+ vae: AutoencoderKL,
92
+ image_encoder: CLIPVisionModelWithProjection,
93
+ unet: UNet2DConditionModel,
94
+ scheduler: KarrasDiffusionSchedulers,
95
+ safety_checker: StableDiffusionSafetyChecker,
96
+ feature_extractor: CLIPFeatureExtractor,
97
+ cc_projection: CCProjection,
98
+ requires_safety_checker: bool = True,
99
+ ):
100
+ super().__init__()
101
+
102
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
103
+ deprecation_message = (
104
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
105
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
106
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
107
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
108
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
109
+ " file"
110
+ )
111
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
112
+ new_config = dict(scheduler.config)
113
+ new_config["steps_offset"] = 1
114
+ scheduler._internal_dict = FrozenDict(new_config)
115
+
116
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
117
+ deprecation_message = (
118
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
119
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
120
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
121
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
122
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
123
+ )
124
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
125
+ new_config = dict(scheduler.config)
126
+ new_config["clip_sample"] = False
127
+ scheduler._internal_dict = FrozenDict(new_config)
128
+
129
+ if safety_checker is None and requires_safety_checker:
130
+ logger.warning(
131
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
132
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
133
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
134
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
135
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
136
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
137
+ )
138
+
139
+ if safety_checker is not None and feature_extractor is None:
140
+ raise ValueError(
141
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
142
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
143
+ )
144
+
145
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
146
+ version.parse(unet.config._diffusers_version).base_version
147
+ ) < version.parse("0.9.0.dev0")
148
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
149
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
150
+ deprecation_message = (
151
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
152
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
153
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
154
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
155
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
156
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
157
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
158
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
159
+ " the `unet/config.json` file"
160
+ )
161
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
162
+ new_config = dict(unet.config)
163
+ new_config["sample_size"] = 64
164
+ unet._internal_dict = FrozenDict(new_config)
165
+
166
+ self.register_modules(
167
+ vae=vae,
168
+ image_encoder=image_encoder,
169
+ unet=unet,
170
+ scheduler=scheduler,
171
+ safety_checker=safety_checker,
172
+ feature_extractor=feature_extractor,
173
+ cc_projection=cc_projection,
174
+ )
175
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
176
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
177
+ # self.model_mode = None
178
+
179
+ def enable_vae_slicing(self):
180
+ r"""
181
+ Enable sliced VAE decoding.
182
+
183
+ When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
184
+ steps. This is useful to save some memory and allow larger batch sizes.
185
+ """
186
+ self.vae.enable_slicing()
187
+
188
+ def disable_vae_slicing(self):
189
+ r"""
190
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
191
+ computing decoding in one step.
192
+ """
193
+ self.vae.disable_slicing()
194
+
195
+ def enable_vae_tiling(self):
196
+ r"""
197
+ Enable tiled VAE decoding.
198
+
199
+ When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
200
+ several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
201
+ """
202
+ self.vae.enable_tiling()
203
+
204
+ def disable_vae_tiling(self):
205
+ r"""
206
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
207
+ computing decoding in one step.
208
+ """
209
+ self.vae.disable_tiling()
210
+
211
+ def enable_sequential_cpu_offload(self, gpu_id=0):
212
+ r"""
213
+ Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
214
+ text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
215
+ `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
216
+ Note that offloading happens on a submodule basis. Memory savings are higher than with
217
+ `enable_model_cpu_offload`, but performance is lower.
218
+ """
219
+ if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
220
+ from accelerate import cpu_offload
221
+ else:
222
+ raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
223
+
224
+ device = torch.device(f"cuda:{gpu_id}")
225
+
226
+ if self.device.type != "cpu":
227
+ self.to("cpu", silence_dtype_warnings=True)
228
+ torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
229
+
230
+ for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
231
+ cpu_offload(cpu_offloaded_model, device)
232
+
233
+ if self.safety_checker is not None:
234
+ cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
235
+
236
+ def enable_model_cpu_offload(self, gpu_id=0):
237
+ r"""
238
+ Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
239
+ to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
240
+ method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
241
+ `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
242
+ """
243
+ if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
244
+ from accelerate import cpu_offload_with_hook
245
+ else:
246
+ raise ImportError("`enable_model_offload` requires `accelerate v0.17.0` or higher.")
247
+
248
+ device = torch.device(f"cuda:{gpu_id}")
249
+
250
+ if self.device.type != "cpu":
251
+ self.to("cpu", silence_dtype_warnings=True)
252
+ torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
253
+
254
+ hook = None
255
+ for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
256
+ _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
257
+
258
+ if self.safety_checker is not None:
259
+ _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
260
+
261
+ # We'll offload the last model manually.
262
+ self.final_offload_hook = hook
263
+
264
+ @property
265
+ def _execution_device(self):
266
+ r"""
267
+ Returns the device on which the pipeline's models will be executed. After calling
268
+ `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
269
+ hooks.
270
+ """
271
+ if not hasattr(self.unet, "_hf_hook"):
272
+ return self.device
273
+ for module in self.unet.modules():
274
+ if (
275
+ hasattr(module, "_hf_hook")
276
+ and hasattr(module._hf_hook, "execution_device")
277
+ and module._hf_hook.execution_device is not None
278
+ ):
279
+ return torch.device(module._hf_hook.execution_device)
280
+ return self.device
281
+
282
+ def _encode_prompt(
283
+ self,
284
+ prompt,
285
+ device,
286
+ num_images_per_prompt,
287
+ do_classifier_free_guidance,
288
+ negative_prompt=None,
289
+ prompt_embeds: Optional[torch.FloatTensor] = None,
290
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
291
+ ):
292
+ r"""
293
+ Encodes the prompt into text encoder hidden states.
294
+
295
+ Args:
296
+ prompt (`str` or `List[str]`, *optional*):
297
+ prompt to be encoded
298
+ device: (`torch.device`):
299
+ torch device
300
+ num_images_per_prompt (`int`):
301
+ number of images that should be generated per prompt
302
+ do_classifier_free_guidance (`bool`):
303
+ whether to use classifier free guidance or not
304
+ negative_prompt (`str` or `List[str]`, *optional*):
305
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
306
+ `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
307
+ Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
308
+ prompt_embeds (`torch.FloatTensor`, *optional*):
309
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
310
+ provided, text embeddings will be generated from `prompt` input argument.
311
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
312
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
313
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
314
+ argument.
315
+ """
316
+ if prompt is not None and isinstance(prompt, str):
317
+ batch_size = 1
318
+ elif prompt is not None and isinstance(prompt, list):
319
+ batch_size = len(prompt)
320
+ else:
321
+ batch_size = prompt_embeds.shape[0]
322
+
323
+ if prompt_embeds is None:
324
+ text_inputs = self.tokenizer(
325
+ prompt,
326
+ padding="max_length",
327
+ max_length=self.tokenizer.model_max_length,
328
+ truncation=True,
329
+ return_tensors="pt",
330
+ )
331
+ text_input_ids = text_inputs.input_ids
332
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
333
+
334
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
335
+ text_input_ids, untruncated_ids
336
+ ):
337
+ removed_text = self.tokenizer.batch_decode(
338
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
339
+ )
340
+ logger.warning(
341
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
342
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
343
+ )
344
+
345
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
346
+ attention_mask = text_inputs.attention_mask.to(device)
347
+ else:
348
+ attention_mask = None
349
+
350
+ prompt_embeds = self.text_encoder(
351
+ text_input_ids.to(device),
352
+ attention_mask=attention_mask,
353
+ )
354
+ prompt_embeds = prompt_embeds[0]
355
+
356
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
357
+
358
+ bs_embed, seq_len, _ = prompt_embeds.shape
359
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
360
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
361
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
362
+
363
+ # get unconditional embeddings for classifier free guidance
364
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
365
+ uncond_tokens: List[str]
366
+ if negative_prompt is None:
367
+ uncond_tokens = [""] * batch_size
368
+ elif type(prompt) is not type(negative_prompt):
369
+ raise TypeError(
370
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
371
+ f" {type(prompt)}."
372
+ )
373
+ elif isinstance(negative_prompt, str):
374
+ uncond_tokens = [negative_prompt]
375
+ elif batch_size != len(negative_prompt):
376
+ raise ValueError(
377
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
378
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
379
+ " the batch size of `prompt`."
380
+ )
381
+ else:
382
+ uncond_tokens = negative_prompt
383
+
384
+ max_length = prompt_embeds.shape[1]
385
+ uncond_input = self.tokenizer(
386
+ uncond_tokens,
387
+ padding="max_length",
388
+ max_length=max_length,
389
+ truncation=True,
390
+ return_tensors="pt",
391
+ )
392
+
393
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
394
+ attention_mask = uncond_input.attention_mask.to(device)
395
+ else:
396
+ attention_mask = None
397
+
398
+ negative_prompt_embeds = self.text_encoder(
399
+ uncond_input.input_ids.to(device),
400
+ attention_mask=attention_mask,
401
+ )
402
+ negative_prompt_embeds = negative_prompt_embeds[0]
403
+
404
+ if do_classifier_free_guidance:
405
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
406
+ seq_len = negative_prompt_embeds.shape[1]
407
+
408
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
409
+
410
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
411
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
412
+
413
+ # For classifier free guidance, we need to do two forward passes.
414
+ # Here we concatenate the unconditional and text embeddings into a single batch
415
+ # to avoid doing two forward passes
416
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
417
+
418
+ return prompt_embeds
419
+
420
+ def CLIP_preprocess(self, x):
421
+ dtype = x.dtype
422
+ # following openai's implementation
423
+ # TODO HF OpenAI CLIP preprocessing issue https://github.com/huggingface/transformers/issues/22505#issuecomment-1650170741
424
+ # follow openai preprocessing to keep exact same, input tensor [-1, 1], otherwise the preprocessing will be different, https://github.com/huggingface/transformers/pull/22608
425
+ if isinstance(x, torch.Tensor):
426
+ if x.min() < -1.0 or x.max() > 1.0:
427
+ raise ValueError("Expected input tensor to have values in the range [-1, 1]")
428
+ x = kornia.geometry.resize(x.to(torch.float32), (224, 224), interpolation='bicubic', align_corners=True, antialias=False).to(dtype=dtype)
429
+ x = (x + 1.) / 2.
430
+ # renormalize according to clip
431
+ x = kornia.enhance.normalize(x, torch.Tensor([0.48145466, 0.4578275, 0.40821073]),
432
+ torch.Tensor([0.26862954, 0.26130258, 0.27577711]))
433
+ return x
434
+
435
+ # from image_variation
436
+ def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance):
437
+ dtype = next(self.image_encoder.parameters()).dtype
438
+ if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
439
+ raise ValueError(
440
+ f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
441
+ )
442
+
443
+ if isinstance(image, torch.Tensor):
444
+ # Batch single image
445
+ if image.ndim == 3:
446
+ assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
447
+ image = image.unsqueeze(0)
448
+
449
+ assert image.ndim == 4, "Image must have 4 dimensions"
450
+
451
+ # Check image is in [-1, 1]
452
+ if image.min() < -1 or image.max() > 1:
453
+ raise ValueError("Image should be in [-1, 1] range")
454
+ else:
455
+ # preprocess image
456
+ if isinstance(image, (PIL.Image.Image, np.ndarray)):
457
+ image = [image]
458
+
459
+ if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
460
+ image = [np.array(i.convert("RGB"))[None, :] for i in image]
461
+ image = np.concatenate(image, axis=0)
462
+ elif isinstance(image, list) and isinstance(image[0], np.ndarray):
463
+ image = np.concatenate([i[None, :] for i in image], axis=0)
464
+
465
+ image = image.transpose(0, 3, 1, 2)
466
+ image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
467
+
468
+ image = image.to(device=device, dtype=dtype)
469
+
470
+ image = self.CLIP_preprocess(image)
471
+ # if not isinstance(image, torch.Tensor):
472
+ # # 0-255
473
+ # print("Warning: image is processed by hf's preprocess, which is different from openai original's.")
474
+ # image = self.feature_extractor(images=image, return_tensors="pt").pixel_values
475
+ image_embeddings = self.image_encoder(image).image_embeds.to(dtype=dtype)
476
+ image_embeddings = image_embeddings.unsqueeze(1)
477
+
478
+ # duplicate image embeddings for each generation per prompt, using mps friendly method
479
+ bs_embed, seq_len, _ = image_embeddings.shape
480
+ image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1)
481
+ image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
482
+
483
+ if do_classifier_free_guidance:
484
+ negative_prompt_embeds = torch.zeros_like(image_embeddings)
485
+
486
+ # For classifier free guidance, we need to do two forward passes.
487
+ # Here we concatenate the unconditional and text embeddings into a single batch
488
+ # to avoid doing two forward passes
489
+ image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings])
490
+
491
+ return image_embeddings
492
+
493
+ def _encode_pose(self, pose, device, num_images_per_prompt, do_classifier_free_guidance):
494
+ dtype = next(self.cc_projection.parameters()).dtype
495
+ if isinstance(pose, torch.Tensor):
496
+ pose_embeddings = pose.unsqueeze(1).to(device=device, dtype=dtype)
497
+ else:
498
+ if isinstance(pose[0], list):
499
+ pose = torch.Tensor(pose)
500
+ else:
501
+ pose = torch.Tensor([pose])
502
+ x, y, z = pose[:,0].unsqueeze(1), pose[:,1].unsqueeze(1), pose[:,2].unsqueeze(1)
503
+ pose_embeddings = torch.cat([torch.deg2rad(x),
504
+ torch.sin(torch.deg2rad(y)),
505
+ torch.cos(torch.deg2rad(y)),
506
+ z], dim=-1).unsqueeze(1).to(device=device, dtype=dtype) # B, 1, 4
507
+ # duplicate pose embeddings for each generation per prompt, using mps friendly method
508
+ bs_embed, seq_len, _ = pose_embeddings.shape
509
+ pose_embeddings = pose_embeddings.repeat(1, num_images_per_prompt, 1)
510
+ pose_embeddings = pose_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
511
+ if do_classifier_free_guidance:
512
+ negative_prompt_embeds = torch.zeros_like(pose_embeddings)
513
+
514
+ # For classifier free guidance, we need to do two forward passes.
515
+ # Here we concatenate the unconditional and text embeddings into a single batch
516
+ # to avoid doing two forward passes
517
+ pose_embeddings = torch.cat([negative_prompt_embeds, pose_embeddings])
518
+ return pose_embeddings
519
+
520
+ def _encode_image_with_pose(self, image, pose, device, num_images_per_prompt, do_classifier_free_guidance):
521
+ img_prompt_embeds = self._encode_image(image, device, num_images_per_prompt, False)
522
+ pose_prompt_embeds = self._encode_pose(pose, device, num_images_per_prompt, False)
523
+ prompt_embeds = torch.cat([img_prompt_embeds, pose_prompt_embeds], dim=-1)
524
+ prompt_embeds = self.cc_projection(prompt_embeds)
525
+ # prompt_embeds = img_prompt_embeds
526
+ # follow 0123, add negative prompt, after projection
527
+ if do_classifier_free_guidance:
528
+ negative_prompt = torch.zeros_like(prompt_embeds)
529
+ prompt_embeds = torch.cat([negative_prompt, prompt_embeds])
530
+ return prompt_embeds
531
+
532
+ def run_safety_checker(self, image, device, dtype):
533
+ if self.safety_checker is not None:
534
+ safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
535
+ image, has_nsfw_concept = self.safety_checker(
536
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
537
+ )
538
+ else:
539
+ has_nsfw_concept = None
540
+ return image, has_nsfw_concept
541
+
542
+ def decode_latents(self, latents):
543
+ latents = 1 / self.vae.config.scaling_factor * latents
544
+ image = self.vae.decode(latents).sample
545
+ image = (image / 2 + 0.5).clamp(0, 1)
546
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
547
+ image = image.cpu().permute(0, 2, 3, 1).float().numpy()
548
+ return image
549
+
550
+ def prepare_extra_step_kwargs(self, generator, eta):
551
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
552
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
553
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
554
+ # and should be between [0, 1]
555
+
556
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
557
+ extra_step_kwargs = {}
558
+ if accepts_eta:
559
+ extra_step_kwargs["eta"] = eta
560
+
561
+ # check if the scheduler accepts generator
562
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
563
+ if accepts_generator:
564
+ extra_step_kwargs["generator"] = generator
565
+ return extra_step_kwargs
566
+
567
+ def check_inputs(self, image, height, width, callback_steps):
568
+ if (
569
+ not isinstance(image, torch.Tensor)
570
+ and not isinstance(image, PIL.Image.Image)
571
+ and not isinstance(image, list)
572
+ ):
573
+ raise ValueError(
574
+ "`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
575
+ f" {type(image)}"
576
+ )
577
+
578
+ if height % 8 != 0 or width % 8 != 0:
579
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
580
+
581
+ if (callback_steps is None) or (
582
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
583
+ ):
584
+ raise ValueError(
585
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
586
+ f" {type(callback_steps)}."
587
+ )
588
+
589
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
590
+ shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
591
+ if isinstance(generator, list) and len(generator) != batch_size:
592
+ raise ValueError(
593
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
594
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
595
+ )
596
+
597
+ if latents is None:
598
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
599
+ else:
600
+ latents = latents.to(device)
601
+
602
+ # scale the initial noise by the standard deviation required by the scheduler
603
+ latents = latents * self.scheduler.init_noise_sigma
604
+ return latents
605
+
606
+ def prepare_img_latents(self, image, batch_size, dtype, device, generator=None, do_classifier_free_guidance=False):
607
+ if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
608
+ raise ValueError(
609
+ f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
610
+ )
611
+
612
+ if isinstance(image, torch.Tensor):
613
+ # Batch single image
614
+ if image.ndim == 3:
615
+ assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
616
+ image = image.unsqueeze(0)
617
+
618
+ assert image.ndim == 4, "Image must have 4 dimensions"
619
+
620
+ # Check image is in [-1, 1]
621
+ if image.min() < -1 or image.max() > 1:
622
+ raise ValueError("Image should be in [-1, 1] range")
623
+ else:
624
+ # preprocess image
625
+ if isinstance(image, (PIL.Image.Image, np.ndarray)):
626
+ image = [image]
627
+
628
+ if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
629
+ image = [np.array(i.convert("RGB"))[None, :] for i in image]
630
+ image = np.concatenate(image, axis=0)
631
+ elif isinstance(image, list) and isinstance(image[0], np.ndarray):
632
+ image = np.concatenate([i[None, :] for i in image], axis=0)
633
+
634
+ image = image.transpose(0, 3, 1, 2)
635
+ image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
636
+
637
+ image = image.to(device=device, dtype=dtype)
638
+
639
+ if isinstance(generator, list) and len(generator) != batch_size:
640
+ raise ValueError(
641
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
642
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
643
+ )
644
+
645
+ if isinstance(generator, list):
646
+ init_latents = [
647
+ self.vae.encode(image[i : i + 1]).latent_dist.mode(generator[i]) for i in range(batch_size) # sample
648
+ ]
649
+ init_latents = torch.cat(init_latents, dim=0)
650
+ else:
651
+ init_latents = self.vae.encode(image).latent_dist.mode()
652
+
653
+ # init_latents = self.vae.config.scaling_factor * init_latents # todo in original zero123's inference gradio_new.py, model.encode_first_stage() is not scaled by scaling_factor
654
+ if batch_size > init_latents.shape[0]:
655
+ # init_latents = init_latents.repeat(batch_size // init_latents.shape[0], 1, 1, 1)
656
+ num_images_per_prompt = batch_size // init_latents.shape[0]
657
+ # duplicate image latents for each generation per prompt, using mps friendly method
658
+ bs_embed, emb_c, emb_h, emb_w = init_latents.shape
659
+ init_latents = init_latents.unsqueeze(1)
660
+ init_latents = init_latents.repeat(1, num_images_per_prompt, 1, 1, 1)
661
+ init_latents = init_latents.view(bs_embed * num_images_per_prompt, emb_c, emb_h, emb_w)
662
+
663
+ # init_latents = torch.cat([init_latents]*2) if do_classifier_free_guidance else init_latents # follow zero123
664
+ init_latents = torch.cat([torch.zeros_like(init_latents), init_latents]) if do_classifier_free_guidance else init_latents
665
+
666
+ init_latents = init_latents.to(device=device, dtype=dtype)
667
+ return init_latents
668
+
669
+ # def load_cc_projection(self, pretrained_weights=None):
670
+ # self.cc_projection = torch.nn.Linear(772, 768)
671
+ # torch.nn.init.eye_(list(self.cc_projection.parameters())[0][:768, :768])
672
+ # torch.nn.init.zeros_(list(self.cc_projection.parameters())[1])
673
+ # if pretrained_weights is not None:
674
+ # self.cc_projection.load_state_dict(pretrained_weights)
675
+
676
+ @torch.no_grad()
677
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
678
+ def __call__(
679
+ self,
680
+ input_imgs: Union[torch.FloatTensor, PIL.Image.Image] = None,
681
+ prompt_imgs: Union[torch.FloatTensor, PIL.Image.Image] = None,
682
+ poses: Union[List[float], List[List[float]]] = None,
683
+ torch_dtype=torch.float32,
684
+ height: Optional[int] = None,
685
+ width: Optional[int] = None,
686
+ num_inference_steps: int = 50,
687
+ guidance_scale: float = 3.0,
688
+ negative_prompt: Optional[Union[str, List[str]]] = None,
689
+ num_images_per_prompt: Optional[int] = 1,
690
+ eta: float = 0.0,
691
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
692
+ latents: Optional[torch.FloatTensor] = None,
693
+ prompt_embeds: Optional[torch.FloatTensor] = None,
694
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
695
+ output_type: Optional[str] = "pil",
696
+ return_dict: bool = True,
697
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
698
+ callback_steps: int = 1,
699
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
700
+ controlnet_conditioning_scale: float = 1.0,
701
+ ):
702
+ r"""
703
+ Function invoked when calling the pipeline for generation.
704
+
705
+ Args:
706
+ input_imgs (`PIL` or `List[PIL]`, *optional*):
707
+ The single input image for each 3D object
708
+ prompt_imgs (`PIL` or `List[PIL]`, *optional*):
709
+ Same as input_imgs, but will be used later as an image prompt condition, encoded by CLIP feature
710
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
711
+ The height in pixels of the generated image.
712
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
713
+ The width in pixels of the generated image.
714
+ num_inference_steps (`int`, *optional*, defaults to 50):
715
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
716
+ expense of slower inference.
717
+ guidance_scale (`float`, *optional*, defaults to 7.5):
718
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
719
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
720
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
721
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
722
+ usually at the expense of lower image quality.
723
+ negative_prompt (`str` or `List[str]`, *optional*):
724
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
725
+ `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
726
+ Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
727
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
728
+ The number of images to generate per prompt.
729
+ eta (`float`, *optional*, defaults to 0.0):
730
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
731
+ [`schedulers.DDIMScheduler`], will be ignored for others.
732
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
733
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
734
+ to make generation deterministic.
735
+ latents (`torch.FloatTensor`, *optional*):
736
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
737
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
738
+ tensor will ge generated by sampling using the supplied random `generator`.
739
+ prompt_embeds (`torch.FloatTensor`, *optional*):
740
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
741
+ provided, text embeddings will be generated from `prompt` input argument.
742
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
743
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
744
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
745
+ argument.
746
+ output_type (`str`, *optional*, defaults to `"pil"`):
747
+ The output format of the generate image. Choose between
748
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
749
+ return_dict (`bool`, *optional*, defaults to `True`):
750
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
751
+ plain tuple.
752
+ callback (`Callable`, *optional*):
753
+ A function that will be called every `callback_steps` steps during inference. The function will be
754
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
755
+ callback_steps (`int`, *optional*, defaults to 1):
756
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
757
+ called at every step.
758
+ cross_attention_kwargs (`dict`, *optional*):
759
+ A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
760
+ `self.processor` in
761
+ [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
762
+
763
+ Examples:
764
+
765
+ Returns:
766
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
767
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
768
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
769
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
770
+ (nsfw) content, according to the `safety_checker`.
771
+ """
772
+ # 0. Default height and width to unet
773
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
774
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
775
+
776
+ # 1. Check inputs. Raise error if not correct
777
+ # input_image = hint_imgs
778
+ self.check_inputs(input_imgs, height, width, callback_steps)
779
+
780
+ # 2. Define call parameters
781
+ if isinstance(input_imgs, PIL.Image.Image):
782
+ batch_size = 1
783
+ elif isinstance(input_imgs, list):
784
+ batch_size = len(input_imgs)
785
+ else:
786
+ batch_size = input_imgs.shape[0]
787
+ device = self._execution_device
788
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
789
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
790
+ # corresponds to doing no classifier free guidance.
791
+ do_classifier_free_guidance = guidance_scale > 1.0
792
+
793
+ # 3. Encode input image with pose as prompt
794
+ prompt_embeds = self._encode_image_with_pose(prompt_imgs, poses, device, num_images_per_prompt, do_classifier_free_guidance)
795
+
796
+ # 4. Prepare timesteps
797
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
798
+ timesteps = self.scheduler.timesteps
799
+
800
+ # 5. Prepare latent variables
801
+ latents = self.prepare_latents(
802
+ batch_size * num_images_per_prompt,
803
+ 4,
804
+ height,
805
+ width,
806
+ prompt_embeds.dtype,
807
+ device,
808
+ generator,
809
+ latents,
810
+ )
811
+
812
+ # 6. Prepare image latents
813
+ img_latents = self.prepare_img_latents(input_imgs,
814
+ batch_size * num_images_per_prompt,
815
+ prompt_embeds.dtype,
816
+ device,
817
+ generator,
818
+ do_classifier_free_guidance)
819
+
820
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
821
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
822
+
823
+ # 7. Denoising loop
824
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
825
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
826
+ for i, t in enumerate(timesteps):
827
+ # expand the latents if we are doing classifier free guidance
828
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
829
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
830
+ latent_model_input = torch.cat([latent_model_input, img_latents], dim=1)
831
+
832
+ # predict the noise residual
833
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
834
+
835
+ # perform guidance
836
+ if do_classifier_free_guidance:
837
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
838
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
839
+
840
+ # compute the previous noisy sample x_t -> x_t-1
841
+ # latents = self.scheduler.step(noise_pred.to(dtype=torch.float32), t, latents.to(dtype=torch.float32)).prev_sample.to(prompt_embeds.dtype)
842
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
843
+
844
+ # call the callback, if provided
845
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
846
+ progress_bar.update()
847
+ if callback is not None and i % callback_steps == 0:
848
+ callback(i, t, latents)
849
+
850
+ # 8. Post-processing
851
+ has_nsfw_concept = None
852
+ if output_type == "latent":
853
+ image = latents
854
+ elif output_type == "pil":
855
+ # 8. Post-processing
856
+ image = self.decode_latents(latents)
857
+ # 10. Convert to PIL
858
+ image = self.numpy_to_pil(image)
859
+ else:
860
+ # 8. Post-processing
861
+ image = self.decode_latents(latents)
862
+
863
+ # Offload last model to CPU
864
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
865
+ self.final_offload_hook.offload()
866
+
867
+ if not return_dict:
868
+ return (image, has_nsfw_concept)
869
+
870
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)