Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import numpy as np | |
from diffusers import DiffusionPipeline, AutoencoderKL, UNet2DConditionModel, DDPMScheduler | |
from transformers import CLIPVisionModelWithProjection, CLIPFeatureExtractor | |
from diffusers.utils import load_image | |
from pipeline_zero1to3_stable import Zero1to3StableDiffusionPipeline, CCProjection | |
import math | |
import imageio | |
import gradio as gr | |
from PIL import Image | |
import cv2 | |
# Define the background removal function | |
def preprocess_image(input_im): | |
''' | |
:param input_im (PIL Image). | |
:return input_im (H, W, 3) array in [0, 1]. | |
''' | |
input_im = input_im.convert('RGB') | |
print("shape1 = ",input_im.size) | |
input_im = input_im.resize([256, 256], Image.Resampling.LANCZOS) | |
input_im = np.asarray(input_im, dtype=np.float32) / 255.0 | |
# input_im[input_im[:, :, -1] <= 0.9] = [1., 1., 1.] | |
return input_im | |
return input_im | |
# Load model and set paths | |
model_id = "mirza152/zero123-face" | |
cc_projection = CCProjection.from_pretrained(model_id, subfolder="cc_projection", use_safetensors=True) | |
unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet", use_safetensors=True) | |
feature_extractor = CLIPFeatureExtractor.from_pretrained(model_id, subfolder="feature_extractor", use_safetensors=True) | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(model_id, subfolder="image_encoder") | |
scheduler = DDPMScheduler.from_pretrained(model_id, subfolder="scheduler", use_safetensors=True) | |
vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", use_safetensors=True) | |
# Instantiate pipeline | |
pipe = Zero1to3StableDiffusionPipeline( | |
unet=unet, | |
cc_projection=cc_projection, | |
vae=vae, | |
scheduler=scheduler, | |
feature_extractor=feature_extractor, | |
image_encoder=image_encoder, | |
safety_checker=None, | |
) | |
pipe.enable_vae_tiling() | |
pipe.enable_attention_slicing() | |
# Define the function to process and generate GIFs | |
def process_image(input_image): | |
input_image = preprocess_image(input_image) | |
H, W = input_image.shape[:2] | |
input_image = Image.fromarray((input_image * 255.0).astype(np.uint8)) | |
total_frames = 8 | |
input_images = [input_image]*total_frames | |
pitch_range, yaw_range = 0.20, 0.20 | |
avg_polar, avg_azimuth = 1.52, 1.57 | |
all_poses = [] | |
# Generate poses for GIF frames | |
for frame_idx in range(total_frames): | |
theta_target = 3.14 / 2 + yaw_range * np.sin(2 * 3.14 * frame_idx / total_frames) | |
polar = avg_polar - theta_target | |
azimuth_cond = 3.14 / 2 - 0.05 + pitch_range * np.cos(2 * 3.14 * frame_idx / total_frames) | |
azimuth = avg_azimuth - azimuth_cond | |
query_pose = torch.tensor([(1.5708 - theta_target) - (1.5708 - avg_polar), math.sin(azimuth), math.cos(azimuth), 1.5708 - avg_azimuth]) | |
all_poses.append(query_pose) | |
query_poses = torch.stack(all_poses) | |
images = pipe(input_imgs=input_images, prompt_imgs=input_images, poses=query_poses, height=H, width=W, guidance_scale=4, num_images_per_prompt=1, num_inference_steps=1).images | |
# Save images to GIF | |
gif_path = "output.gif" | |
images[0].save(gif_path, save_all=True, append_images=images[1:], duration=100, loop=0) | |
return gif_path | |
# Create Gradio Interface | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=gr.Image(type="pil", label="Input Image"), | |
outputs=gr.Image(type="filepath", label="Output GIF"), | |
title="Image to GIF Pipeline", | |
description="Upload an image to generate a GIF.", | |
allow_flagging="never", | |
) | |
iface.launch() | |