Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision import models, transforms
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Define the model architecture (must match the saved model)
|
8 |
+
class_names = ["cordana", "healthy", "pestalotiopsis", "sigatoka"]
|
9 |
+
def load_model():
|
10 |
+
model = models.alexnet(pretrained=False)
|
11 |
+
num_ftrs = model.classifier[6].in_features
|
12 |
+
model.classifier[6] = nn.Linear(num_ftrs, len(class_names)) # Adjust this for your number of classes
|
13 |
+
|
14 |
+
# Load the model weights
|
15 |
+
model.load_state_dict(torch.load('model_alexnet.pth'))
|
16 |
+
model.eval() # Set to evaluation mode
|
17 |
+
|
18 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
19 |
+
model.to(device)
|
20 |
+
return model, device
|
21 |
+
|
22 |
+
model_alexnet, device = load_model()
|
23 |
+
|
24 |
+
# Image transformations
|
25 |
+
transform = transforms.Compose([
|
26 |
+
transforms.Resize(256),
|
27 |
+
transforms.CenterCrop(224),
|
28 |
+
transforms.ToTensor(),
|
29 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
30 |
+
])
|
31 |
+
|
32 |
+
# Prediction function
|
33 |
+
def predict_image(image):
|
34 |
+
image = Image.fromarray(image.astype('uint8'), 'RGB')
|
35 |
+
image = transform(image).unsqueeze(0) # Add batch dimension
|
36 |
+
image = image.to(device)
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = model_alexnet(image)
|
40 |
+
_, predicted = torch.max(outputs, 1)
|
41 |
+
predicted = predicted.cpu().numpy()
|
42 |
+
|
43 |
+
return class_names[predicted[0]] # Adjust this if needed
|
44 |
+
|
45 |
+
|
46 |
+
iface = gr.Interface(fn=predict_image, inputs="image", outputs="label",
|
47 |
+
description="This model is a fine-tuned version of AlexNet specifically designed to identify four types of diseases in banana tree leaves. It can classify the leaves as Cordana, Healthy, Pestalotiopsis, or Sigatoka. Upload a photo of a banana leaf and the model will help you determine its health condition.",
|
48 |
+
examples=[
|
49 |
+
'data/test/cordana/1.jpeg',
|
50 |
+
'data/test/healthy/5.jpeg',
|
51 |
+
'data/test/pestalotiopsis/5.jpeg',
|
52 |
+
'data/test/sigatoka/1.jpeg'
|
53 |
+
]
|
54 |
+
)
|
55 |
+
|
56 |
+
iface.launch()
|