Spaces:
Sleeping
Sleeping
import numpy as np | |
import cv2 | |
import keras | |
import os | |
import matplotlib.pyplot as plt | |
import time | |
# bald_path = "/home/julien/Downloads/archive (1)/Dataset/Test/Bald" | |
# notbald_path = "/home/julien/Downloads/archive (1)/Dataset/Test/NotBald" | |
def predict(im): | |
# im_names = os.listdirpath) | |
im_names= [im] | |
ims = np.zeros((len(im_names), 64, 64, 3)) | |
for i, f in enumerate(im_names): | |
# img = cv2.imread(os.path.join(path, f)) | |
# img = im | |
img = cv2.imread(f) | |
data = cv2.resize(img, (64, 64)) | |
data = cv2.cvtColor(data, cv2.COLOR_BGR2RGB) | |
ims[i] = np.reshape(data, (1, 64, 64, 3)) / 255.0 | |
print(ims.shape) | |
res = model.predict(ims) | |
""" | |
for i in range(len(im_names)): | |
print('[没秃]' if res[i][0] <0.3 else '[秃了]', 'Bald:',res[i][0]) | |
""" | |
return res | |
model = keras.models.load_model('models/bald_classifity.h5') | |
""" | |
bald_res = predict(bald_path) | |
notbald_res = predict(notbald_path) | |
print(notbald_res.shape) | |
print(notbald_res[:,0]) | |
print(f"Bald mean : {np.mean(bald_res[:, 0])}") | |
print(f"Not Bald mean : {np.mean(notbald_res[:, 0])}") | |
print(bald_res[:, 0]>0.3) | |
print(f"Accuracy : {(np.sum(bald_res[:, 0]>0.3) + np.sum(notbald_res[:, 0]<0.3))/(len(bald_res)+len(notbald_res))}") | |
""" | |