Spaces:
Sleeping
Sleeping
# model.py | |
import torch.nn as nn | |
# neural network architecture | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.conv1 = nn.Conv2d(1, 10, kernel_size=5) | |
self.conv2 = nn.Conv2d(10, 20, kernel_size=5) | |
self.dropout = nn.Dropout2d() | |
self.fc1 = nn.Linear(320, 50) | |
self.fc2 = nn.Linear(50, 10) | |
def forward(self, x): | |
x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2)) | |
x = nn.functional.relu(nn.functional.max_pool2d(self.dropout(self.conv2(x)), 2)) | |
x = x.view(-1, 320) | |
x = nn.functional.relu(self.fc1(x)) | |
x = nn.functional.dropout(x, training=self.training) | |
x = self.fc2(x) | |
return nn.functional.log_softmax(x, dim=1) | |
model = Net() | |