JuanJoseMV
commited on
Commit
·
8bff16c
1
Parent(s):
65145f1
testing locally
Browse files- NeuralTextGenerator.py +4 -1
- __pycache__/NeuralTextGenerator.cpython-310.pyc +0 -0
- __pycache__/app.cpython-310.pyc +0 -0
- app.py +63 -39
- flagged/log.csv +6 -0
NeuralTextGenerator.py
CHANGED
@@ -20,7 +20,7 @@ DEFAULT_DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
20 |
|
21 |
|
22 |
class BertTextGenerator:
|
23 |
-
def __init__(self, model_version, tokenizer, device=DEFAULT_DEVICE, use_apex=APEX_AVAILABLE, use_fast=True,
|
24 |
do_basic_tokenize=True):
|
25 |
"""
|
26 |
Wrapper of a BERT model from AutoModelForMaskedLM from huggingfaces.
|
@@ -47,6 +47,9 @@ class BertTextGenerator:
|
|
47 |
self.model, optimizer = amp.initialize(self.model, optimizer, opt_level="O2", keep_batchnorm_fp32=True,
|
48 |
loss_scale="dynamic")
|
49 |
|
|
|
|
|
|
|
50 |
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer, do_lower_case="uncased" in model_version,
|
51 |
use_fast=use_fast,
|
52 |
do_basic_tokenize=do_basic_tokenize) # added to avoid splitting of unused tokens
|
|
|
20 |
|
21 |
|
22 |
class BertTextGenerator:
|
23 |
+
def __init__(self, model_version, tokenizer=None, device=DEFAULT_DEVICE, use_apex=APEX_AVAILABLE, use_fast=True,
|
24 |
do_basic_tokenize=True):
|
25 |
"""
|
26 |
Wrapper of a BERT model from AutoModelForMaskedLM from huggingfaces.
|
|
|
47 |
self.model, optimizer = amp.initialize(self.model, optimizer, opt_level="O2", keep_batchnorm_fp32=True,
|
48 |
loss_scale="dynamic")
|
49 |
|
50 |
+
if tokenizer is None:
|
51 |
+
tokenizer = model_version
|
52 |
+
|
53 |
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer, do_lower_case="uncased" in model_version,
|
54 |
use_fast=use_fast,
|
55 |
do_basic_tokenize=do_basic_tokenize) # added to avoid splitting of unused tokens
|
__pycache__/NeuralTextGenerator.cpython-310.pyc
CHANGED
Binary files a/__pycache__/NeuralTextGenerator.cpython-310.pyc and b/__pycache__/NeuralTextGenerator.cpython-310.pyc differ
|
|
__pycache__/app.cpython-310.pyc
ADDED
Binary file (2.49 kB). View file
|
|
app.py
CHANGED
@@ -1,25 +1,12 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from NeuralTextGenerator import BertTextGenerator
|
3 |
|
4 |
# Load models
|
5 |
-
|
6 |
-
## BERT
|
7 |
-
BERT_model_name = "Twitter/twhin-bert-large"
|
8 |
-
BERT = BertTextGenerator(BERT_model_name, tokenizer=BERT_model_name)
|
9 |
-
|
10 |
-
## RoBERTa
|
11 |
-
RoBERTa_model_name = "cardiffnlp/twitter-xlm-roberta-base"
|
12 |
-
RoBERTa = BertTextGenerator(RoBERTa_model_name, tokenizer=RoBERTa_model_name)
|
13 |
-
|
14 |
-
## Finetuned BERT
|
15 |
-
finetunned_BERT_model_name = "JuanJoseMV/BERT_text_gen"
|
16 |
-
finetunned_BERT = BertTextGenerator(finetunned_BERT_model_name, tokenizer='bert-base-uncased')
|
17 |
-
|
18 |
-
## Finetuned RoBERTa
|
19 |
-
finetunned_RoBERTa_model_name = "JuanJoseMV/XLM_RoBERTa_text_gen"
|
20 |
-
finetunned_RoBERTa = BertTextGenerator(finetunned_RoBERTa_model_name, tokenizer=finetunned_RoBERTa_model_name)
|
21 |
-
|
22 |
-
## Add special tokens
|
23 |
special_tokens = [
|
24 |
'[POSITIVE-0]',
|
25 |
'[POSITIVE-1]',
|
@@ -29,58 +16,95 @@ special_tokens = [
|
|
29 |
'[NEGATIVE-2]'
|
30 |
]
|
31 |
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
RoBERTa
|
36 |
-
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
if selected_model == "Finetuned_RoBERTa":
|
44 |
generator = finetunned_RoBERTa
|
45 |
-
elif selected_model == "
|
46 |
-
generator =
|
47 |
-
|
|
|
48 |
generator = RoBERTa
|
49 |
else:
|
50 |
generator = BERT
|
51 |
|
|
|
52 |
parameters = {'n_sentences': n_sentences,
|
53 |
-
'batch_size':
|
54 |
'avg_len':30,
|
55 |
'max_len':50,
|
56 |
-
|
57 |
'generation_method':'parallel',
|
58 |
'sample': True,
|
59 |
'burnin': 450,
|
60 |
'max_iter': max_iter,
|
61 |
-
'top_k':
|
62 |
'seed_text': f"[{sentiment}-0] [{sentiment}-1] [{sentiment}-2] {seed_text}",
|
|
|
63 |
'verbose': True
|
64 |
}
|
65 |
sents = generator.generate(**parameters)
|
66 |
-
gen_text = ''
|
67 |
|
|
|
|
|
68 |
for i, s in enumerate(sents):
|
69 |
-
|
|
|
70 |
|
71 |
return gen_text
|
72 |
|
73 |
-
|
74 |
demo = gr.Interface(
|
75 |
sentence_builder,
|
76 |
[
|
77 |
-
gr.Radio(["BERT", "RoBERTa", "Finetuned_RoBERTa", "
|
78 |
-
gr.
|
79 |
-
gr.Slider(
|
80 |
-
gr.
|
81 |
-
gr.
|
|
|
|
|
|
|
82 |
],
|
83 |
"text",
|
84 |
)
|
85 |
|
|
|
86 |
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
3 |
+
|
4 |
+
import re
|
5 |
import gradio as gr
|
6 |
from NeuralTextGenerator import BertTextGenerator
|
7 |
|
8 |
# Load models
|
9 |
+
## Special tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
special_tokens = [
|
11 |
'[POSITIVE-0]',
|
12 |
'[POSITIVE-1]',
|
|
|
16 |
'[NEGATIVE-2]'
|
17 |
]
|
18 |
|
19 |
+
## Finetuned RoBERTa
|
20 |
+
finetunned_RoBERTa_model_name = "JuanJoseMV/XLM_RoBERTa_text_gen"
|
21 |
+
finetunned_RoBERTa = BertTextGenerator(finetunned_RoBERTa_model_name)
|
22 |
+
|
23 |
+
finetunned_RoBERTa.tokenizer.add_special_tokens({'additional_special_tokens': special_tokens})
|
24 |
+
finetunned_RoBERTa.model.resize_token_embeddings(len(finetunned_RoBERTa.tokenizer))
|
25 |
|
26 |
+
## Finetuned RoBERTa hate
|
27 |
+
finetunned_RoBERTa_Hate_model_name = "JuanJoseMV/XLM_RoBERTa_text_gen_FT_Hate"
|
28 |
+
finetunned_RoBERTa_Hate = BertTextGenerator(finetunned_RoBERTa_Hate_model_name)
|
29 |
|
30 |
+
# finetunned_RoBERTa_Hate.tokenizer.add_special_tokens({'additional_special_tokens': special_tokens})
|
31 |
+
# finetunned_RoBERTa_Hate.model.resize_token_embeddings(len(finetunned_RoBERTa_Hate.tokenizer))
|
32 |
|
33 |
+
# ## Finetuned BERT
|
34 |
+
# finetunned_BERT_model_name = "JuanJoseMV/BERT_text_gen"
|
35 |
+
# finetunned_BERT = BertTextGenerator(finetunned_BERT_model_name, tokenizer='Twitter/twhin-bert-large')
|
36 |
+
|
37 |
+
# finetunned_BERT.tokenizer.add_special_tokens({'additional_special_tokens': special_tokens})
|
38 |
+
# finetunned_BERT.model.resize_token_embeddings(len(finetunned_BERT.tokenizer))
|
39 |
+
|
40 |
+
## RoBERTa
|
41 |
+
RoBERTa_model_name = "cardiffnlp/twitter-xlm-roberta-base"
|
42 |
+
RoBERTa = BertTextGenerator(RoBERTa_model_name)
|
43 |
|
44 |
+
## BERT
|
45 |
+
BERT_model_name = "Twitter/twhin-bert-large"
|
46 |
+
BERT = BertTextGenerator(BERT_model_name)
|
47 |
+
|
48 |
+
def sentence_builder(
|
49 |
+
selected_model,
|
50 |
+
n_sentences,
|
51 |
+
max_iter,
|
52 |
+
temperature,
|
53 |
+
top_k,
|
54 |
+
sentiment,
|
55 |
+
seed_text
|
56 |
+
):
|
57 |
+
# Select model
|
58 |
if selected_model == "Finetuned_RoBERTa":
|
59 |
generator = finetunned_RoBERTa
|
60 |
+
elif selected_model == "Finetuned_RoBERTa_Hate":
|
61 |
+
generator = finetunned_RoBERTa_Hate
|
62 |
+
sentiment = 'HATE'
|
63 |
+
if selected_model == "RoBERTa":
|
64 |
generator = RoBERTa
|
65 |
else:
|
66 |
generator = BERT
|
67 |
|
68 |
+
# Generate
|
69 |
parameters = {'n_sentences': n_sentences,
|
70 |
+
'batch_size': n_sentences if n_sentences < 10 else 10,
|
71 |
'avg_len':30,
|
72 |
'max_len':50,
|
73 |
+
'std_len' : 3,
|
74 |
'generation_method':'parallel',
|
75 |
'sample': True,
|
76 |
'burnin': 450,
|
77 |
'max_iter': max_iter,
|
78 |
+
'top_k': top_k,
|
79 |
'seed_text': f"[{sentiment}-0] [{sentiment}-1] [{sentiment}-2] {seed_text}",
|
80 |
+
'temperature': temperature,
|
81 |
'verbose': True
|
82 |
}
|
83 |
sents = generator.generate(**parameters)
|
|
|
84 |
|
85 |
+
# Clean
|
86 |
+
gen_text = ''
|
87 |
for i, s in enumerate(sents):
|
88 |
+
clean_sent = re.sub(r'\[.*?\]', '', s)
|
89 |
+
gen_text += f'- GENERATED TWEET #{i + 1}: {clean_sent}\n\n'
|
90 |
|
91 |
return gen_text
|
92 |
|
93 |
+
# Set Demo
|
94 |
demo = gr.Interface(
|
95 |
sentence_builder,
|
96 |
[
|
97 |
+
gr.Radio(["BERT", "RoBERTa", "Finetuned_RoBERTa", "Finetuned_RoBERTa_Hate"], value="RoBERTa", label="Generator model"),
|
98 |
+
# gr.Radio(["BERT", "RoBERTa"], value="BERT", label="Generator model"),
|
99 |
+
gr.Slider(1, 15, value=5, label="Num. Tweets", step=1, info="Number of tweets to be generated."),
|
100 |
+
gr.Slider(50, 500, value=300, label="Max. iter", info="Maximum number of iterations for the generation."),
|
101 |
+
gr.Slider(0, 1.0, value=0.8, step=0.05, label="Temperature", info="Temperature parameter for the generation."),
|
102 |
+
gr.Slider(1, 200, value=130, step=1, label="Top k", info="Top k parameter for the generation."),
|
103 |
+
gr.Radio(["POSITIVE", "NEGATIVE"], value="NEGATIVE", label="Sentiment to generate"),
|
104 |
+
gr.Textbox('ATP Finals in Turin', label="Seed text", info="Seed text for the generation.")
|
105 |
],
|
106 |
"text",
|
107 |
)
|
108 |
|
109 |
+
# Run Demo
|
110 |
demo.launch()
|
flagged/log.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Generator model,Num. Tweets,Max. iter,Temperature,Top k,Sentiment to generate,Seed text,output,flag,username,timestamp
|
2 |
+
BERT,2,300,0.7,130,POSITIVE,Awesome ATP Finals in Turin,"'- GENERATED TWEET #1: Awesome ATP Finals in Turin,,,,,,,,,,,,,,,,,,,,, from Nikita Dancin ⚡️
|
3 |
+
|
4 |
+
- GENERATED TWEET #2: Awesome ATP Finals in Turin👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏
|
5 |
+
|
6 |
+
",,,2023-03-24 11:04:02.609689
|