Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# loarding pipeline
|
5 |
+
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
6 |
+
ner_tagger = pipeline("ner", model="dslim/bert-base-NER", grouped_entities=True)
|
7 |
+
|
8 |
+
st.set_page_config(page_title="Customer Support Analyzer", layout="centered")
|
9 |
+
st.title("📞 AI Customer service Dialogue Analysis")
|
10 |
+
|
11 |
+
# Customer type
|
12 |
+
user_input = st.text_area("Please enter the question or conversation:", height=150)
|
13 |
+
|
14 |
+
if st.button("Analyse"):
|
15 |
+
if user_input.strip() == "":
|
16 |
+
st.warning("Please enter content")
|
17 |
+
else:
|
18 |
+
with st.spinner("Analysing..."):
|
19 |
+
# Emotion
|
20 |
+
sentiment_result = sentiment_analyzer(user_input)[0]
|
21 |
+
st.subheader("📌 Sentiment analysis results")
|
22 |
+
st.write(f"**Emotional type**: {sentiment_result['label']}")
|
23 |
+
st.write(f"**Confidence degree**: {sentiment_result['score']:.2f}")
|
24 |
+
|
25 |
+
# Command
|
26 |
+
ner_results = ner_tagger(user_input)
|
27 |
+
extracted_entities = [ent['word'] for ent in ner_results if ent['score'] > 0.5]
|
28 |
+
|
29 |
+
st.subheader("🔍Problem keyword recognition")
|
30 |
+
if extracted_entities:
|
31 |
+
st.write(", ".join(set(extracted_entities)))
|
32 |
+
else:
|
33 |
+
st.write("The specific problem keywords were not identified")
|