Spaces:
Runtime error
Runtime error
from layers import BilinearUpSampling2D | |
from tensorflow.keras.models import load_model | |
from utils import load_images, predict | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import gradio as gr | |
from huggingface_hub import from_pretrained_keras | |
custom_objects = {'BilinearUpSampling2D': BilinearUpSampling2D, 'depth_loss_function': None} | |
print('Loading model...') | |
model = from_pretrained_keras("keras-io/monocular-depth-estimation", custom_objects=custom_objects, compile=False) | |
print('Successfully loaded model...') | |
examples = ['examples/00015_colors.png', 'examples/00084_colors.png', 'examples/00033_colors.png'] | |
def infer(image): | |
inputs = load_images([image]) | |
outputs = predict(model, inputs) | |
plasma = plt.get_cmap('plasma') | |
rescaled = outputs[0][:, :, 0] | |
rescaled = rescaled - np.min(rescaled) | |
rescaled = rescaled / np.max(rescaled) | |
image_out = plasma(rescaled)[:, :, :3] | |
return image_out | |
iface = gr.Interface( | |
fn=infer, | |
title="Monocular Depth Estimation", | |
description = "Keras Implementation of Unet architecture with Densenet201 backbone for estimating the depth of image 📏", | |
inputs=[gr.inputs.Image(label="image", type="numpy", shape=(640, 480))], | |
outputs="image", | |
article = "Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. The ideal based on the keras example from <a href=\"https://keras.io/examples/vision/depth_estimation/\">Victor Basu</a>", | |
examples=examples, cache_examples=True).launch(debug=True) | |