Spaces:
Running
Running
import threading | |
from typing import Any, List, Optional | |
import insightface | |
import roop.globals | |
from roop.typing import Frame | |
FACE_ANALYSER = None | |
THREAD_LOCK = threading.Lock() | |
def get_face_analyser() -> Any: | |
""" | |
Initialize and return the face analyser. | |
This function ensures that the face analyser is initialized only once, | |
using a thread-safe mechanism. | |
Returns: | |
Any: An instance of the FaceAnalysis class from insightface. | |
""" | |
global FACE_ANALYSER | |
with THREAD_LOCK: | |
if FACE_ANALYSER is None: | |
FACE_ANALYSER = insightface.app.FaceAnalysis( | |
name='buffalo_l', | |
providers=roop.globals.execution_providers | |
) | |
FACE_ANALYSER.prepare(ctx_id=0, det_size=(640, 640)) | |
return FACE_ANALYSER | |
def get_one_face(frame: Frame) -> Optional[Any]: | |
""" | |
Extract the face with the smallest bounding box from the given frame. | |
Args: | |
frame (Frame): The image or video frame to analyze. | |
Returns: | |
Optional[Any]: The face with the smallest bounding box or None if no face is found. | |
""" | |
faces = get_face_analyser().get(frame) | |
if not faces: | |
return None | |
return min(faces, key=lambda x: x.bbox[0]) | |
def get_many_faces(frame: Frame) -> List[Any]: | |
""" | |
Extract all detected faces from the given frame. | |
Args: | |
frame (Frame): The image or video frame to analyze. | |
Returns: | |
List[Any]: A list of detected faces or an empty list if no faces are found. | |
""" | |
try: | |
return get_face_analyser().get(frame) | |
except Exception as e: | |
print(f"Error getting faces: {e}") | |
return [] | |