04-Gradio_SOTA / qasrl_model_pipeline.py
Jonni's picture
Upload qasrl_model_pipeline.py
fd78f0e
from typing import Optional
import json
from argparse import Namespace
from pathlib import Path
from transformers import Text2TextGenerationPipeline, AutoModelForSeq2SeqLM, AutoTokenizer
def get_markers_for_model(is_t5_model: bool) -> Namespace:
special_tokens_constants = Namespace()
if is_t5_model:
# T5 model have 100 special tokens by default
special_tokens_constants.separator_input_question_predicate = "<extra_id_1>"
special_tokens_constants.separator_output_answers = "<extra_id_3>"
special_tokens_constants.separator_output_questions = "<extra_id_5>" # if using only questions
special_tokens_constants.separator_output_question_answer = "<extra_id_7>"
special_tokens_constants.separator_output_pairs = "<extra_id_9>"
special_tokens_constants.predicate_generic_marker = "<extra_id_10>"
special_tokens_constants.predicate_verb_marker = "<extra_id_11>"
special_tokens_constants.predicate_nominalization_marker = "<extra_id_12>"
else:
special_tokens_constants.separator_input_question_predicate = "<question_predicate_sep>"
special_tokens_constants.separator_output_answers = "<answers_sep>"
special_tokens_constants.separator_output_questions = "<question_sep>" # if using only questions
special_tokens_constants.separator_output_question_answer = "<question_answer_sep>"
special_tokens_constants.separator_output_pairs = "<qa_pairs_sep>"
special_tokens_constants.predicate_generic_marker = "<predicate_marker>"
special_tokens_constants.predicate_verb_marker = "<verbal_predicate_marker>"
special_tokens_constants.predicate_nominalization_marker = "<nominalization_predicate_marker>"
return special_tokens_constants
def load_trained_model(name_or_path):
import huggingface_hub as HFhub
tokenizer = AutoTokenizer.from_pretrained(name_or_path)
model = AutoModelForSeq2SeqLM.from_pretrained(name_or_path)
# load preprocessing_kwargs from the model repo on HF hub, or from the local model directory
kwargs_filename = None
if name_or_path.startswith("kleinay/"): # and 'preprocessing_kwargs.json' in HFhub.list_repo_files(name_or_path): # the supported version of HFhub doesn't support list_repo_files
kwargs_filename = HFhub.hf_hub_download(repo_id=name_or_path, filename="preprocessing_kwargs.json")
elif Path(name_or_path).is_dir() and (Path(name_or_path) / "experiment_kwargs.json").exists():
kwargs_filename = Path(name_or_path) / "experiment_kwargs.json"
if kwargs_filename:
preprocessing_kwargs = json.load(open(kwargs_filename))
# integrate into model.config (for decoding args, e.g. "num_beams"), and save also as standalone object for preprocessing
model.config.preprocessing_kwargs = Namespace(**preprocessing_kwargs)
model.config.update(preprocessing_kwargs)
return model, tokenizer
class QASRL_Pipeline(Text2TextGenerationPipeline):
def __init__(self, model_repo: str, **kwargs):
model, tokenizer = load_trained_model(model_repo)
super().__init__(model, tokenizer, framework="pt")
self.is_t5_model = "t5" in model.config.model_type
self.special_tokens = get_markers_for_model(self.is_t5_model)
self.data_args = model.config.preprocessing_kwargs
# backward compatibility - default keyword values implemeted in `run_summarization`, thus not saved in `preprocessing_kwargs`
if "predicate_marker_type" not in vars(self.data_args):
self.data_args.predicate_marker_type = "generic"
if "use_bilateral_predicate_marker" not in vars(self.data_args):
self.data_args.use_bilateral_predicate_marker = True
if "append_verb_form" not in vars(self.data_args):
self.data_args.append_verb_form = True
self._update_config(**kwargs)
def _update_config(self, **kwargs):
" Update self.model.config with initialization parameters and necessary defaults. "
# set default values that will always override model.config, but can overriden by __init__ kwargs
kwargs["max_length"] = kwargs.get("max_length", 80)
# override model.config with kwargs
for k,v in kwargs.items():
self.model.config.__dict__[k] = v
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs, forward_kwargs, postprocess_kwargs = {}, {}, {}
if "predicate_marker" in kwargs:
preprocess_kwargs["predicate_marker"] = kwargs["predicate_marker"]
if "predicate_type" in kwargs:
preprocess_kwargs["predicate_type"] = kwargs["predicate_type"]
if "verb_form" in kwargs:
preprocess_kwargs["verb_form"] = kwargs["verb_form"]
return preprocess_kwargs, forward_kwargs, postprocess_kwargs
def preprocess(self, inputs, predicate_marker="<predicate>", predicate_type=None, verb_form=None):
# Here, inputs is string or list of strings; apply string postprocessing
if isinstance(inputs, str):
processed_inputs = self._preprocess_string(inputs, predicate_marker, predicate_type, verb_form)
elif hasattr(inputs, "__iter__"):
processed_inputs = [self._preprocess_string(s, predicate_marker, predicate_type, verb_form) for s in inputs]
else:
raise ValueError("inputs must be str or Iterable[str]")
# Now pass to super.preprocess for tokenization
return super().preprocess(processed_inputs)
def _preprocess_string(self, seq: str, predicate_marker: str, predicate_type: Optional[str], verb_form: Optional[str]) -> str:
sent_tokens = seq.split(" ")
assert predicate_marker in sent_tokens, f"Input sentence must include a predicate-marker token ('{predicate_marker}') before the target predicate word"
predicate_idx = sent_tokens.index(predicate_marker)
sent_tokens.remove(predicate_marker)
sentence_before_predicate = " ".join([sent_tokens[i] for i in range(predicate_idx)])
predicate = sent_tokens[predicate_idx]
sentence_after_predicate = " ".join([sent_tokens[i] for i in range(predicate_idx+1, len(sent_tokens))])
if self.data_args.predicate_marker_type == "generic":
predicate_marker = self.special_tokens.predicate_generic_marker
# In case we want special marker for each predicate type: """
elif self.data_args.predicate_marker_type == "pred_type":
assert predicate_type is not None, "For this model, you must provide the `predicate_type` either when initializing QASRL_Pipeline(...) or when applying __call__(...) on it"
assert predicate_type in ("verbal", "nominal"), f"`predicate_type` must be either 'verbal' or 'nominal'; got '{predicate_type}'"
predicate_marker = {"verbal": self.special_tokens.predicate_verb_marker ,
"nominal": self.special_tokens.predicate_nominalization_marker
}[predicate_type]
if self.data_args.use_bilateral_predicate_marker:
seq = f"{sentence_before_predicate} {predicate_marker} {predicate} {predicate_marker} {sentence_after_predicate}"
else:
seq = f"{sentence_before_predicate} {predicate_marker} {predicate} {sentence_after_predicate}"
# embed also verb_form
if self.data_args.append_verb_form and verb_form is None:
raise ValueError(f"For this model, you must provide the `verb_form` of the predicate when applying __call__(...)")
elif self.data_args.append_verb_form:
seq = f"{seq} {self.special_tokens.separator_input_question_predicate} {verb_form} "
else:
seq = f"{seq} "
# append source prefix (for t5 models)
prefix = self._get_source_prefix(predicate_type)
return prefix + seq
def _get_source_prefix(self, predicate_type: Optional[str]):
if not self.is_t5_model or self.data_args.source_prefix is None:
return ''
if not self.data_args.source_prefix.startswith("<"): # Regular prefix - not dependent on input row x
return self.data_args.source_prefix
if self.data_args.source_prefix == "<predicate-type>":
if predicate_type is None:
raise ValueError("source_prefix is '<predicate-type>' but input no `predicate_type`.")
else:
return f"Generate QAs for {predicate_type} QASRL: "
def _forward(self, *args, **kwargs):
outputs = super()._forward(*args, **kwargs)
return outputs
def postprocess(self, model_outputs):
output_seq = self.tokenizer.decode(
model_outputs["output_ids"].squeeze(),
skip_special_tokens=False,
clean_up_tokenization_spaces=False,
)
output_seq = output_seq.strip(self.tokenizer.pad_token).strip(self.tokenizer.eos_token).strip()
qa_subseqs = output_seq.split(self.special_tokens.separator_output_pairs)
qas = [self._postrocess_qa(qa_subseq) for qa_subseq in qa_subseqs]
return {"generated_text": output_seq,
"QAs": qas}
def _postrocess_qa(self, seq: str) -> str:
# split question and answers
if self.special_tokens.separator_output_question_answer in seq:
question, answer = seq.split(self.special_tokens.separator_output_question_answer)[:2]
else:
print("invalid format: no separator between question and answer found...")
return None
# question, answer = seq, '' # Or: backoff to only question
# skip "_" slots in questions
question = ' '.join(t for t in question.split(' ') if t != '_')
answers = [a.strip() for a in answer.split(self.special_tokens.separator_output_answers)]
return {"question": question, "answers": answers}
if __name__ == "__main__":
pipe = QASRL_Pipeline("kleinay/qanom-seq2seq-model-baseline")
res1 = pipe("The student was interested in Luke 's <predicate> research about sea animals .", verb_form="research", predicate_type="nominal")
res2 = pipe(["The doctor was interested in Luke 's <predicate> treatment .",
"The Veterinary student was interested in Luke 's <predicate> treatment of sea animals ."], verb_form="treat", predicate_type="nominal", num_beams=10)
res3 = pipe("A number of professions have <predicate> developed that specialize in the treatment of mental disorders .", verb_form="develop", predicate_type="verbal")
print(res1)
print(res2)
print(res3)