Spaces:
Runtime error
Runtime error
''' | |
+----------------------+ +-------------------------+ +-------------------------------+ +-------------------------+ | |
| Step 1: Set Up | | Step 2: Set Up Gradio | | Step 3: Speech-to-Text | | Step 4: Text-to-Speech | | |
| Environment | | Interface | | & Language Model Processing | | Output | | |
+----------------------+ +-------------------------+ +-------------------------------+ +-------------------------+ | |
| | | | | | | | | |
| - Import Python | | - Define interface | | - Transcribe audio | | - XTTS model generates | | |
| libraries | | components | | to text using | | spoken response from | | |
| - Initialize models: |--------> - Configure audio and |------->| Faster Whisper ASR |------->| LLM's text response | | |
| Whisper, Mistral, | | text interaction | | - Transcribed text | | | | |
| XTTS | | - Launch interface | | is added to | | | | |
| | | | | chatbot's history | | | | |
| | | | | - Mistral LLM | | | | |
| | | | | processes chatbot | | | | |
| | | | | history to generate | | | | |
| | | | | response | | | | |
+----------------------+ +-------------------------+ +-------------------------------+ +-------------------------+ | |
''' | |
###### Set Up Environment ###### | |
import os | |
# Set CUDA environment variable and install llama-cpp-python | |
# llama-cpp-python is a python binding for llama.cpp library which enables LLM inference in pure C/C++ | |
os.environ["CUDACXX"] = "/usr/local/cuda/bin/nvcc" | |
os.system('python -m unidic download') | |
os.system('CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python==0.2.11 --verbose') | |
# Third-party library imports | |
from faster_whisper import WhisperModel | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
from llama_cpp import Llama | |
from TTS.api import TTS | |
from TTS.utils.manage import ModelManager | |
from TTS.tts.configs.xtts_config import XttsConfig | |
from TTS.tts.models.xtts import Xtts | |
from TTS.utils.generic_utils import get_user_data_dir | |
#from TTS.utils.manage import ModelManager | |
# Local imports | |
from utils import get_sentence, wave_header_chunk, generate_speech_for_sentence | |
# Load Whisper ASR model | |
print("Loading Whisper ASR") | |
whisper_model = WhisperModel("large-v3", device="cpu", compute_type="float32") | |
# Load Mistral LLM | |
print("Loading Mistral LLM") | |
hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", local_dir=".", filename="mistral-7b-instruct-v0.1.Q5_K_M.gguf") | |
mistral_model_path="./mistral-7b-instruct-v0.1.Q5_K_M.gguf" | |
mistral_llm = Llama(model_path=mistral_model_path,n_gpu_layers=35,max_new_tokens=256, context_window=4096, n_ctx=4096,n_batch=128,verbose=False) | |
# Load XTTS Model | |
print("Loading XTTS model") | |
#model_name = "tts_models/multilingual/multi-dataset/xtts_v2" # move in v2, since xtts_v1 is generated keyerror, I guess you can select it with old github's release. | |
os.environ["COQUI_TOS_AGREED"] = "1" | |
#m = ModelManager().download_model(model_name) | |
##print(m) | |
#m = model_name | |
#xtts_model = TTS("tts_models/multilingual/multi-dataset/xtts_v2", gpu=False) | |
device = "cpu" | |
model_name = "tts_models/multilingual/multi-dataset/xtts_v2" | |
print("⏳Downloading model") | |
ModelManager().download_model(model_name) | |
model_path = os.path.join( | |
get_user_data_dir("tts"), model_name.replace("/", "--") | |
) | |
config = XttsConfig() | |
config.load_json(os.path.join(model_path, "config.json")) | |
xtts_model = Xtts.init_from_config(config) | |
xtts_model.load_checkpoint(config, checkpoint_dir=model_path, eval=True) | |
xtts_model.to(device) | |
#xtts_model = TTS(model_name, gpu=False) | |
#xtts_model.to("cpu") # no GPU or Amd | |
#tts.to("cuda") # cuda only | |
#tts_model_name = "tts_models/multilingual/multi-dataset/xtts_v2" | |
#ModelManager().download_model(tts_model_name) | |
#tts_model_path = os.path.join(get_user_data_dir("tts"), tts_model_name.replace("/", "--")) | |
#config = XttsConfig() | |
#config.load_json(os.path.join(tts_model_path, "config.json")) | |
#xtts_model = Xtts.init_from_config(config) | |
#xtts_model.to("cpu") | |
#xtts_model.load_checkpoint( | |
# config, | |
# checkpoint_path=os.path.join(tts_model_path, "model.pth"), | |
# vocab_path=os.path.join(tts_model_path, "vocab.json"), | |
# eval=True, | |
# use_deepspeed=True, | |
#) | |
#xtts_model.cuda() | |
print("Loaded XTTS model") | |
###### Set up Gradio Interface ###### | |
with gr.Blocks(title="Voice chat with LLM") as demo: | |
DESCRIPTION = """# Voice chat with LLM""" | |
gr.Markdown(DESCRIPTION) | |
# Define chatbot component | |
chatbot = gr.Chatbot( | |
value=[(None, "Hi friend, I'm Amy, an AI coach. How can I help you today?")], # Initial greeting from the chatbot | |
elem_id="chatbot", | |
avatar_images=("examples/hf-logo.png", "examples/ai-chat-logo.png"), | |
bubble_full_width=False, | |
) | |
# Define chatbot voice component | |
VOICES = ["female", "male"] | |
with gr.Row(): | |
chatbot_voice = gr.Dropdown( | |
label="Voice of the Chatbot", | |
info="How should Chatbot talk like", | |
choices=VOICES, | |
max_choices=1, | |
value=VOICES[0], | |
) | |
# Define text and audio record input components | |
with gr.Row(): | |
txt_box = gr.Textbox( | |
scale=3, | |
show_label=False, | |
placeholder="Enter text and press enter, or speak to your microphone", | |
container=False, | |
interactive=True, | |
) | |
audio_record = gr.Audio(sources=["microphone"], type="filepath", scale=4) | |
# Define generated audio playback component | |
with gr.Row(): | |
sentence = gr.Textbox(visible=False) | |
audio_playback = gr.Audio( | |
value=None, | |
label="Generated audio response", | |
streaming=True, | |
autoplay=True,interactive=False, | |
show_label=True, | |
) | |
# Will be triggered on text submit (will send to generate_speech) | |
def add_text(chatbot_history, text): | |
chatbot_history = [] if chatbot_history is None else chatbot_history | |
chatbot_history = chatbot_history + [(text, None)] | |
return chatbot_history, gr.update(value="", interactive=False) | |
# Will be triggered on voice submit (will transribe and send to generate_speech) | |
def add_audio(chatbot_history, audio): | |
chatbot_history = [] if chatbot_history is None else chatbot_history | |
# get result from whisper and strip it to delete begin and end space | |
response, _ = whisper_model.transcribe(audio) | |
text = list(response)[0].text.strip() | |
print("Transcribed text:", text) | |
chatbot_history = chatbot_history + [(text, None)] | |
return chatbot_history, gr.update(value="", interactive=False) | |
def generate_speech(chatbot_history, chatbot_voice, initial_greeting=False): | |
# Start by yielding an initial empty audio to set up autoplay | |
yield ("", chatbot_history, wave_header_chunk()) | |
#yield ("", chatbot_history) | |
# Helper function to handle the speech generation and yielding process | |
def handle_speech_generation(sentence, chatbot_history, chatbot_voice): | |
if sentence != "": | |
print("Processing sentence") | |
# generate speech by cloning a voice using default setting | |
generated_speech = generate_speech_for_sentence(chatbot_history, chatbot_voice, sentence, xtts_model, None, return_as_byte=True) | |
if generated_speech is not None: | |
_, audio_dict = generated_speech | |
yield (sentence, chatbot_history, audio_dict["value"]) | |
if initial_greeting: | |
# Process only the initial greeting if specified | |
for _, sentence in chatbot_history: | |
yield from handle_speech_generation(sentence, chatbot_history, chatbot_voice) | |
else: | |
# Continuously get and process sentences from a generator function | |
for sentence, chatbot_history in get_sentence(chatbot_history, mistral_llm): | |
print("Inserting sentence to queue") | |
yield from handle_speech_generation(sentence, chatbot_history, chatbot_voice) | |
txt_msg = txt_box.submit(fn=add_text, inputs=[chatbot, txt_box], outputs=[chatbot, txt_box], queue=False | |
).then(fn=generate_speech, inputs=[chatbot,chatbot_voice], outputs=[sentence, chatbot, audio_playback]) | |
txt_msg.then(fn=lambda: gr.update(interactive=True), inputs=None, outputs=[txt_box], queue=False) | |
audio_msg = audio_record.stop_recording(fn=add_audio, inputs=[chatbot, audio_record], outputs=[chatbot, txt_box], queue=False | |
).then(fn=generate_speech, inputs=[chatbot,chatbot_voice], outputs=[sentence, chatbot, audio_playback]) | |
audio_msg.then(fn=lambda: (gr.update(interactive=True),gr.update(interactive=True,value=None)), inputs=None, outputs=[txt_box, audio_record], queue=False) | |
FOOTNOTE = """ | |
This Space demonstrates how to speak to an llm chatbot, based solely on open accessible models. | |
It relies on the following models : | |
- Speech to Text Model: [Faster-Whisper-large-v3](https://huggingface.co/Systran/faster-whisper-large-v3) an ASR model, to transcribe recorded audio to text. | |
- Large Language Model: [Mistral-7b-instruct-v0.1-quantized](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) a LLM to generate the chatbot responses. | |
- Text to Speech Model: [XTTS-v2](https://huggingface.co/spaces/coqui/xtts) a TTS model, to generate the voice of the chatbot. | |
Note: | |
- Responses generated by chat model should not be assumed correct or taken serious, as this is a demonstration example only | |
- iOS (Iphone/Ipad) devices may not experience voice due to autoplay being disabled on these devices by Vendor""" | |
gr.Markdown(FOOTNOTE) | |
demo.load(fn=generate_speech, inputs=[chatbot,chatbot_voice, gr.State(value=True)], outputs=[sentence, chatbot, audio_playback]) | |
demo.queue().launch(debug=True,share=True) |