John6666 commited on
Commit
b3b3af9
1 Parent(s): 40bc9ab

Upload 2 files

Browse files
Files changed (2) hide show
  1. dc.py +11 -11
  2. modutils.py +2 -2
dc.py CHANGED
@@ -360,8 +360,8 @@ class GuiSD:
360
  retain_task_model_in_cache=False,
361
  device="cpu",
362
  )
363
- self.model.load_beta_styles()
364
- #self.model.device = torch.device("cpu") #
365
 
366
  def infer_short(self, model, pipe_params, progress=gr.Progress(track_tqdm=True)):
367
  #progress(0, desc="Start inference...")
@@ -504,7 +504,7 @@ class GuiSD:
504
  mode_ip2,
505
  scale_ip2,
506
  pag_scale,
507
- progress=gr.Progress(track_tqdm=True),
508
  ):
509
  #progress(0, desc="Preparing inference...")
510
 
@@ -614,15 +614,15 @@ class GuiSD:
614
  "high_threshold": high_threshold,
615
  "value_threshold": value_threshold,
616
  "distance_threshold": distance_threshold,
617
- "lora_A": lora1 if lora1 != "None" else None,
618
  "lora_scale_A": lora_scale1,
619
- "lora_B": lora2 if lora2 != "None" else None,
620
  "lora_scale_B": lora_scale2,
621
- "lora_C": lora3 if lora3 != "None" else None,
622
  "lora_scale_C": lora_scale3,
623
- "lora_D": lora4 if lora4 != "None" else None,
624
  "lora_scale_D": lora_scale4,
625
- "lora_E": lora5 if lora5 != "None" else None,
626
  "lora_scale_E": lora_scale5,
627
  ## BEGIN MOD
628
  "textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [],
@@ -672,14 +672,14 @@ class GuiSD:
672
  }
673
 
674
  self.model.device = torch.device("cuda:0")
675
- if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * 5:
676
  self.model.pipe.transformer.to(self.model.device)
677
  print("transformer to cuda")
678
 
679
  #progress(1, desc="Inference preparation completed. Starting inference...")
680
 
681
  info_state = "" # for yield version
682
- return self.infer_short(self.model, pipe_params, progress), info_state
683
  ## END MOD
684
 
685
  def dynamic_gpu_duration(func, duration, *args):
@@ -814,7 +814,7 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
814
  progress(1, desc="Preparation completed. Starting inference...")
815
 
816
  progress(0, desc="Loading model...")
817
- sd_gen.load_new_model(model_name, vae, TASK_MODEL_LIST[0], progress)
818
  progress(1, desc="Model loaded.")
819
  progress(0, desc="Starting Inference...")
820
  images, info = sd_gen_generate_pipeline(prompt, negative_prompt, 1, num_inference_steps,
 
360
  retain_task_model_in_cache=False,
361
  device="cpu",
362
  )
363
+ #self.model.load_beta_styles()
364
+ self.model.device = torch.device("cpu") #
365
 
366
  def infer_short(self, model, pipe_params, progress=gr.Progress(track_tqdm=True)):
367
  #progress(0, desc="Start inference...")
 
504
  mode_ip2,
505
  scale_ip2,
506
  pag_scale,
507
+ #progress=gr.Progress(track_tqdm=True),
508
  ):
509
  #progress(0, desc="Preparing inference...")
510
 
 
614
  "high_threshold": high_threshold,
615
  "value_threshold": value_threshold,
616
  "distance_threshold": distance_threshold,
617
+ "lora_A": lora1 if lora1 != "None" and lora1 != "" else None,
618
  "lora_scale_A": lora_scale1,
619
+ "lora_B": lora2 if lora2 != "None" and lora2 != "" else None,
620
  "lora_scale_B": lora_scale2,
621
+ "lora_C": lora3 if lora3 != "None" and lora3 != "" else None,
622
  "lora_scale_C": lora_scale3,
623
+ "lora_D": lora4 if lora4 != "None" and lora4 != "" else None,
624
  "lora_scale_D": lora_scale4,
625
+ "lora_E": lora5 if lora5 != "None" and lora5 != "" else None,
626
  "lora_scale_E": lora_scale5,
627
  ## BEGIN MOD
628
  "textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [],
 
672
  }
673
 
674
  self.model.device = torch.device("cuda:0")
675
+ if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * 5 and loras_list != [""] * 5:
676
  self.model.pipe.transformer.to(self.model.device)
677
  print("transformer to cuda")
678
 
679
  #progress(1, desc="Inference preparation completed. Starting inference...")
680
 
681
  info_state = "" # for yield version
682
+ return self.infer_short(self.model, pipe_params), info_state
683
  ## END MOD
684
 
685
  def dynamic_gpu_duration(func, duration, *args):
 
814
  progress(1, desc="Preparation completed. Starting inference...")
815
 
816
  progress(0, desc="Loading model...")
817
+ sd_gen.load_new_model(model_name, vae, TASK_MODEL_LIST[0])
818
  progress(1, desc="Model loaded.")
819
  progress(0, desc="Starting Inference...")
820
  images, info = sd_gen_generate_pipeline(prompt, negative_prompt, 1, num_inference_steps,
modutils.py CHANGED
@@ -136,7 +136,7 @@ def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
136
  dt_now = datetime.now(timezone(timedelta(hours=9)))
137
  basename = dt_now.strftime('%Y%m%d_%H%M%S_')
138
  i = 1
139
- if not images: return images
140
  output_images = []
141
  output_paths = []
142
  for image in images:
@@ -153,7 +153,7 @@ def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
153
  output_paths.append(str(newpath))
154
  output_images.append((str(newpath), str(filename)))
155
  progress(1, desc="Gallery updated.")
156
- return gr.update(value=output_images), gr.update(value=output_paths), gr.update(visible=True)
157
 
158
 
159
  def download_private_repo(repo_id, dir_path, is_replace):
 
136
  dt_now = datetime.now(timezone(timedelta(hours=9)))
137
  basename = dt_now.strftime('%Y%m%d_%H%M%S_')
138
  i = 1
139
+ if not images: return images, gr.update(visible=False)
140
  output_images = []
141
  output_paths = []
142
  for image in images:
 
153
  output_paths.append(str(newpath))
154
  output_images.append((str(newpath), str(filename)))
155
  progress(1, desc="Gallery updated.")
156
+ return gr.update(value=output_images), gr.update(value=output_paths, visible=True)
157
 
158
 
159
  def download_private_repo(repo_id, dir_path, is_replace):