File size: 55,089 Bytes
9ee2570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27218a1
 
 
 
 
 
 
 
9ee2570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27218a1
 
9ee2570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ee7707
9ee2570
1f682f8
9ee2570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27218a1
9ee2570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27218a1
9ee2570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27218a1
9ee2570
 
 
 
27218a1
 
 
 
9ee2570
 
1f682f8
9ee2570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27218a1
9ee2570
 
 
 
 
 
 
 
 
27218a1
9ee2570
 
 
 
 
 
 
 
1f682f8
9ee2570
 
 
 
 
 
 
40ea453
 
 
 
9ee2570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f682f8
 
 
9ee2570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
import spaces
import os
from stablepy import Model_Diffusers
from stablepy.diffusers_vanilla.model import scheduler_names
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
import torch
import re
import shutil
import random
from stablepy import (
    CONTROLNET_MODEL_IDS,
    VALID_TASKS,
    T2I_PREPROCESSOR_NAME,
    FLASH_LORA,
    SCHEDULER_CONFIG_MAP,
    scheduler_names,
    IP_ADAPTER_MODELS,
    IP_ADAPTERS_SD,
    IP_ADAPTERS_SDXL,
    REPO_IMAGE_ENCODER,
    ALL_PROMPT_WEIGHT_OPTIONS,
    SD15_TASKS,
    SDXL_TASKS,
)
import urllib.parse
import gradio as gr
from PIL import Image
import IPython.display
import time, json
from IPython.utils import capture
import logging
logging.getLogger("diffusers").setLevel(logging.ERROR)
import diffusers
diffusers.utils.logging.set_verbosity(40)
import warnings
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
from stablepy import logger
logger.setLevel(logging.CRITICAL)

from env import (
    hf_token, hf_read_token, # to use only for private repos
    CIVITAI_API_KEY, HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
    HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO,
    HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
    directory_models, directory_loras, directory_vaes, directory_embeds,
    directory_embeds_sdxl, directory_embeds_positive_sdxl,
    load_diffusers_format_model, download_model_list, download_lora_list,
    download_vae_list, download_embeds)

preprocessor_controlnet = {
  "openpose": [
    "Openpose",
    "None",
  ],
  "scribble": [
    "HED",
    "Pidinet",
    "None",
  ],
  "softedge": [
    "Pidinet",
    "HED",
    "HED safe",
    "Pidinet safe",
    "None",
  ],
  "segmentation": [
    "UPerNet",
    "None",
  ],
  "depth": [
    "DPT",
    "Midas",
    "None",
  ],
  "normalbae": [
    "NormalBae",
    "None",
  ],
  "lineart": [
    "Lineart",
    "Lineart coarse",
    "Lineart (anime)",
    "None",
    "None (anime)",
  ],
  "shuffle": [
    "ContentShuffle",
    "None",
  ],
  "canny": [
    "Canny"
  ],
  "mlsd": [
    "MLSD"
  ],
  "ip2p": [
    "ip2p"
  ],
}

task_stablepy = {
    'txt2img': 'txt2img',
    'img2img': 'img2img',
    'inpaint': 'inpaint',
    # 'canny T2I Adapter': 'sdxl_canny_t2i',  # NO HAVE STEP CALLBACK PARAMETERS SO NOT WORKS WITH DIFFUSERS 0.29.0
    # 'sketch  T2I Adapter': 'sdxl_sketch_t2i',
    # 'lineart  T2I Adapter': 'sdxl_lineart_t2i',
    # 'depth-midas  T2I Adapter': 'sdxl_depth-midas_t2i',
    # 'openpose  T2I Adapter': 'sdxl_openpose_t2i',
    'openpose ControlNet': 'openpose',
    'canny ControlNet': 'canny',
    'mlsd ControlNet': 'mlsd',
    'scribble ControlNet': 'scribble',
    'softedge ControlNet': 'softedge',
    'segmentation ControlNet': 'segmentation',
    'depth ControlNet': 'depth',
    'normalbae ControlNet': 'normalbae',
    'lineart ControlNet': 'lineart',
    # 'lineart_anime ControlNet': 'lineart_anime',
    'shuffle ControlNet': 'shuffle',
    'ip2p ControlNet': 'ip2p',
    'optical pattern ControlNet': 'pattern',
    'tile realistic': 'sdxl_tile_realistic',
}

task_model_list = list(task_stablepy.keys())


def download_things(directory, url, hf_token="", civitai_api_key=""):
    url = url.strip()
    
    if "drive.google.com" in url:
        original_dir = os.getcwd()
        os.chdir(directory)
        os.system(f"gdown --fuzzy {url}")
        os.chdir(original_dir)
    elif "huggingface.co" in url:
        url = url.replace("?download=true", "")
        # url = urllib.parse.quote(url, safe=':/')  # fix encoding
        if "/blob/" in url:
            url = url.replace("/blob/", "/resolve/")
        user_header = f'"Authorization: Bearer {hf_token}"'
        if hf_token:
            os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory}  -o {url.split('/')[-1]}")
        else:
            os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory}  -o {url.split('/')[-1]}")
    elif "civitai.com" in url:
        if "?" in url:
            url = url.split("?")[0]
        if civitai_api_key:
            url = url + f"?token={civitai_api_key}"
            os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
        else:
            print("\033[91mYou need an API key to download Civitai models.\033[0m")
    else:
        os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")


def get_model_list(directory_path):
    model_list = []
    valid_extensions = {'.ckpt' , '.pt', '.pth', '.safetensors', '.bin'}

    for filename in os.listdir(directory_path):
        if os.path.splitext(filename)[1] in valid_extensions:
            name_without_extension = os.path.splitext(filename)[0]
            file_path = os.path.join(directory_path, filename)
            # model_list.append((name_without_extension, file_path))
            model_list.append(file_path)
            print('\033[34mFILE: ' + file_path + '\033[0m')
    return model_list


def process_string(input_string):
    parts = input_string.split('/')

    if len(parts) == 2:
        first_element = parts[1]
        complete_string = input_string
        result = (first_element, complete_string)
        return result
    else:
        return None

## BEGIN MOD
from modutils import (to_list, list_uniq, list_sub, get_model_id_list, get_tupled_embed_list,
                      get_tupled_model_list, get_lora_model_list, download_private_repo)

# - **Download Models**
download_model = ", ".join(download_model_list)
# - **Download VAEs**
download_vae = ", ".join(download_vae_list)
# - **Download LoRAs**
download_lora = ", ".join(download_lora_list)

#download_private_repo(HF_LORA_ESSENTIAL_PRIVATE_REPO, directory_loras, True)
download_private_repo(HF_VAE_PRIVATE_REPO, directory_vaes, False)

load_diffusers_format_model = list_uniq(load_diffusers_format_model + get_model_id_list())
## END MOD

CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
hf_token = os.environ.get("HF_TOKEN")

# Download stuffs
for url in [url.strip() for url in download_model.split(',')]:
    if not os.path.exists(f"./models/{url.split('/')[-1]}"):
        download_things(directory_models, url, hf_token, CIVITAI_API_KEY)
for url in [url.strip() for url in download_vae.split(',')]:
    if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
        download_things(directory_vaes, url, hf_token, CIVITAI_API_KEY)
for url in [url.strip() for url in download_lora.split(',')]:
    if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
        download_things(directory_loras, url, hf_token, CIVITAI_API_KEY)

# Download Embeddings
for url_embed in download_embeds:
    if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
        download_things(directory_embeds, url_embed, hf_token, CIVITAI_API_KEY)

# Build list models
embed_list = get_model_list(directory_embeds)
model_list = get_model_list(directory_models)
model_list = load_diffusers_format_model + model_list
## BEGIN MOD
lora_model_list = get_lora_model_list()
vae_model_list = get_model_list(directory_vaes)
vae_model_list.insert(0, "None")

#download_private_repo(HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, directory_embeds_sdxl, False)
#download_private_repo(HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO, directory_embeds_positive_sdxl, False)
embed_sdxl_list = get_model_list(directory_embeds_sdxl) + get_model_list(directory_embeds_positive_sdxl)

def get_embed_list(pipeline_name):
    return get_tupled_embed_list(embed_sdxl_list if pipeline_name == "StableDiffusionXLPipeline" else embed_list)


## END MOD

print('\033[33m🏁 Download and listing of valid models completed.\033[0m')

upscaler_dict_gui = {
    None : None,
    "Lanczos" : "Lanczos",
    "Nearest" : "Nearest",
    "RealESRGAN_x4plus" : "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
    "RealESRNet_x4plus" : "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth",
    "RealESRGAN_x4plus_anime_6B": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
    "RealESRGAN_x2plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
    "realesr-animevideov3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
    "realesr-general-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
    "realesr-general-wdn-x4v3" : "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
    "4x-UltraSharp" : "https://huggingface.co/Shandypur/ESRGAN-4x-UltraSharp/resolve/main/4x-UltraSharp.pth",
    "4x_foolhardy_Remacri" : "https://huggingface.co/FacehugmanIII/4x_foolhardy_Remacri/resolve/main/4x_foolhardy_Remacri.pth",
    "Remacri4xExtraSmoother" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/Remacri%204x%20ExtraSmoother.pth",
    "AnimeSharp4x" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/AnimeSharp%204x.pth",
    "lollypop" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/lollypop.pth",
    "RealisticRescaler4x" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/RealisticRescaler%204x.pth",
    "NickelbackFS4x" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/NickelbackFS%204x.pth"
}


def extract_parameters(input_string):
    parameters = {}
    input_string = input_string.replace("\n", "")

    if not "Negative prompt:" in input_string:
        print("Negative prompt not detected")
        parameters["prompt"] = input_string
        return parameters

    parm = input_string.split("Negative prompt:")
    parameters["prompt"] = parm[0]
    if not "Steps:" in parm[1]:
        print("Steps not detected")
        parameters["neg_prompt"] = parm[1]
        return parameters
    parm = parm[1].split("Steps:")
    parameters["neg_prompt"] = parm[0]
    input_string = "Steps:" + parm[1]

    # Extracting Steps
    steps_match = re.search(r'Steps: (\d+)', input_string)
    if steps_match:
        parameters['Steps'] = int(steps_match.group(1))

    # Extracting Size
    size_match = re.search(r'Size: (\d+x\d+)', input_string)
    if size_match:
        parameters['Size'] = size_match.group(1)
        width, height = map(int, parameters['Size'].split('x'))
        parameters['width'] = width
        parameters['height'] = height

    # Extracting other parameters
    other_parameters = re.findall(r'(\w+): (.*?)(?=, \w+|$)', input_string)
    for param in other_parameters:
        parameters[param[0]] = param[1].strip('"')

    return parameters


## BEGIN MOD
class GuiSD:
    def __init__(self):
        self.model = None
    
        print("Loading model...")
        self.model = Model_Diffusers(
            base_model_id="cagliostrolab/animagine-xl-3.1",
            task_name="txt2img",
            vae_model=None,
            type_model_precision=torch.float16,
            retain_task_model_in_cache=False,
            #device="cpu",
        )
        self.model.device = torch.device("cpu") #

    def infer_short(self, model, pipe_params, progress=gr.Progress(track_tqdm=True)):
        progress(0, desc="Start inference...")
        images, image_list = model(**pipe_params)
        progress(1, desc="Inference completed.")
        if not isinstance(images, list): images = [images]
        img = []
        for image in images:
            img.append((image, None))
        return img

    def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):

        yield f"Loading model: {model_name}"
        
        vae_model = vae_model if vae_model != "None" else None

        if model_name in model_list:
            model_is_xl = "xl" in model_name.lower()
            sdxl_in_vae = vae_model and "sdxl" in vae_model.lower()
            model_type = "SDXL" if model_is_xl else "SD 1.5"
            incompatible_vae = (model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae)

            if incompatible_vae:
                vae_model = None

        self.model.device = torch.device("cpu")
        
        self.model.load_pipe(
            model_name,
            task_name=task_stablepy[task],
            vae_model=vae_model if vae_model != "None" else None,
            type_model_precision=torch.float16,
            retain_task_model_in_cache=False,
        )
        yield f"Model loaded: {model_name}"

    @spaces.GPU
    def generate_pipeline(

        self,

        prompt,

        neg_prompt,

        num_images,

        steps,

        cfg,

        clip_skip,

        seed,

        lora1,

        lora_scale1,

        lora2,

        lora_scale2,

        lora3,

        lora_scale3,

        lora4,

        lora_scale4,

        lora5,

        lora_scale5,

        sampler,

        img_height,

        img_width,

        model_name,

        vae_model,

        task,

        image_control,

        preprocessor_name,

        preprocess_resolution,

        image_resolution,

        style_prompt,  # list []

        style_json_file,

        image_mask,

        strength,

        low_threshold,

        high_threshold,

        value_threshold,

        distance_threshold,

        controlnet_output_scaling_in_unet,

        controlnet_start_threshold,

        controlnet_stop_threshold,

        textual_inversion,

        syntax_weights,

        upscaler_model_path,

        upscaler_increases_size,

        esrgan_tile,

        esrgan_tile_overlap,

        hires_steps,

        hires_denoising_strength,

        hires_sampler,

        hires_prompt,

        hires_negative_prompt,

        hires_before_adetailer,

        hires_after_adetailer,

        loop_generation,

        leave_progress_bar,

        disable_progress_bar,

        image_previews,

        display_images,

        save_generated_images,

        image_storage_location,

        retain_compel_previous_load,

        retain_detailfix_model_previous_load,

        retain_hires_model_previous_load,

        t2i_adapter_preprocessor,

        t2i_adapter_conditioning_scale,

        t2i_adapter_conditioning_factor,

        xformers_memory_efficient_attention,

        freeu,

        generator_in_cpu,

        adetailer_inpaint_only,

        adetailer_verbose,

        adetailer_sampler,

        adetailer_active_a,

        prompt_ad_a,

        negative_prompt_ad_a,

        strength_ad_a,

        face_detector_ad_a,

        person_detector_ad_a,

        hand_detector_ad_a,

        mask_dilation_a,

        mask_blur_a,

        mask_padding_a,

        adetailer_active_b,

        prompt_ad_b,

        negative_prompt_ad_b,

        strength_ad_b,

        face_detector_ad_b,

        person_detector_ad_b,

        hand_detector_ad_b,

        mask_dilation_b,

        mask_blur_b,

        mask_padding_b,

        retain_task_cache_gui,

        image_ip1,

        mask_ip1,

        model_ip1,

        mode_ip1,

        scale_ip1,

        image_ip2,

        mask_ip2,

        model_ip2,

        mode_ip2,

        scale_ip2,

        progress=gr.Progress(track_tqdm=True),

    ):
        progress(0, desc="Preparing inference...")
        
        vae_model = vae_model if vae_model != "None" else None
        loras_list = [lora1, lora2, lora3, lora4, lora5]
        vae_msg = f"VAE: {vae_model}" if vae_model else ""
        msg_lora = []

## BEGIN MOD
        prompt, neg_prompt = insert_model_recom_prompt(prompt, neg_prompt, model_name)
        global lora_model_list
        lora_model_list = get_lora_model_list()
## END MOD
        
        if model_name in model_list:
            model_is_xl = "xl" in model_name.lower()
            sdxl_in_vae = vae_model and "sdxl" in vae_model.lower()
            model_type = "SDXL" if model_is_xl else "SD 1.5"
            incompatible_vae = (model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae)

            if incompatible_vae:
                msg_inc_vae = (
                    f"The selected VAE is for a { 'SD 1.5' if model_is_xl else 'SDXL' } model, but you"
                    f" are using a { model_type } model. The default VAE "
                    "will be used."
                )
                gr.Info(msg_inc_vae)
                vae_msg = msg_inc_vae
                vae_model = None

            for la in loras_list:
                if la is not None and la != "None" and la in lora_model_list:
                    print(la)
                    lora_type = ("animetarot" in la.lower() or "Hyper-SD15-8steps".lower() in la.lower())
                    if (model_is_xl and lora_type) or (not model_is_xl and not lora_type):
                        msg_inc_lora = f"The LoRA {la} is for { 'SD 1.5' if model_is_xl else 'SDXL' }, but you are using { model_type }."
                        gr.Info(msg_inc_lora)
                        msg_lora.append(msg_inc_lora)

        task = task_stablepy[task]

        params_ip_img = []
        params_ip_msk = []
        params_ip_model = []
        params_ip_mode = []
        params_ip_scale = []

        all_adapters = [
            (image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1),
            (image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2),
        ]

        for imgip, mskip, modelip, modeip, scaleip in all_adapters:
            if imgip:
                params_ip_img.append(imgip)
                if mskip:
                    params_ip_msk.append(mskip)
                params_ip_model.append(modelip)
                params_ip_mode.append(modeip)
                params_ip_scale.append(scaleip)

        # First load
        self.model.device = torch.device("cuda:0")
        model_precision = torch.float16
        if not self.model:
            from stablepy import Model_Diffusers

            print("Loading model...")
            self.model = Model_Diffusers(
                base_model_id=model_name,
                task_name=task,
                vae_model=vae_model if vae_model != "None" else None,
                type_model_precision=model_precision,
                retain_task_model_in_cache=retain_task_cache_gui,
            )

        if task != "txt2img" and not image_control:
            raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'")

        if task == "inpaint" and not image_mask:
            raise ValueError("No mask image found: Specify one in 'Image Mask'")

        if upscaler_model_path in [None, "Lanczos", "Nearest"]:
            upscaler_model = upscaler_model_path
        else:
            directory_upscalers = 'upscalers'
            os.makedirs(directory_upscalers, exist_ok=True)

            url_upscaler = upscaler_dict_gui[upscaler_model_path]

            if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
                download_things(directory_upscalers, url_upscaler, hf_token)

            upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}"

        logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)

        print("Config model:", model_name, vae_model, loras_list)

        self.model.load_pipe(
            model_name,
            task_name=task,
            vae_model=vae_model if vae_model != "None" else None,
            type_model_precision=model_precision,
            retain_task_model_in_cache=retain_task_cache_gui,
        )

## BEGIN MOD
#        if textual_inversion and self.model.class_name == "StableDiffusionXLPipeline":
#            print("No Textual inversion for SDXL")
## END MOD

        adetailer_params_A = {
            "face_detector_ad" : face_detector_ad_a,
            "person_detector_ad" : person_detector_ad_a,
            "hand_detector_ad" : hand_detector_ad_a,
            "prompt": prompt_ad_a,
            "negative_prompt" : negative_prompt_ad_a,
            "strength" : strength_ad_a,
            # "image_list_task" : None,
            "mask_dilation" : mask_dilation_a,
            "mask_blur" : mask_blur_a,
            "mask_padding" : mask_padding_a,
            "inpaint_only" : adetailer_inpaint_only,
            "sampler" : adetailer_sampler,
        }

        adetailer_params_B = {
            "face_detector_ad" : face_detector_ad_b,
            "person_detector_ad" : person_detector_ad_b,
            "hand_detector_ad" : hand_detector_ad_b,
            "prompt": prompt_ad_b,
            "negative_prompt" : negative_prompt_ad_b,
            "strength" : strength_ad_b,
            # "image_list_task" : None,
            "mask_dilation" : mask_dilation_b,
            "mask_blur" : mask_blur_b,
            "mask_padding" : mask_padding_b,
        }
        pipe_params = {
            "prompt": prompt,
            "negative_prompt": neg_prompt,
            "img_height": img_height,
            "img_width": img_width,
            "num_images": num_images,
            "num_steps": steps,
            "guidance_scale": cfg,
            "clip_skip": clip_skip,
            "seed": seed,
            "image": image_control,
            "preprocessor_name": preprocessor_name,
            "preprocess_resolution": preprocess_resolution,
            "image_resolution": image_resolution,
            "style_prompt": style_prompt if style_prompt else "",
            "style_json_file": "",
            "image_mask": image_mask,  # only for Inpaint
            "strength": strength,  # only for Inpaint or ...
            "low_threshold": low_threshold,
            "high_threshold": high_threshold,
            "value_threshold": value_threshold,
            "distance_threshold": distance_threshold,
            "lora_A": lora1 if lora1 != "None" else None,
            "lora_scale_A": lora_scale1,
            "lora_B": lora2 if lora2 != "None" else None,
            "lora_scale_B": lora_scale2,
            "lora_C": lora3 if lora3 != "None" else None,
            "lora_scale_C": lora_scale3,
            "lora_D": lora4 if lora4 != "None" else None,
            "lora_scale_D": lora_scale4,
            "lora_E": lora5 if lora5 != "None" else None,
            "lora_scale_E": lora_scale5,
## BEGIN MOD
            "textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [],
## END MOD
            "syntax_weights": syntax_weights,  # "Classic"
            "sampler": sampler,
            "xformers_memory_efficient_attention": xformers_memory_efficient_attention,
            "gui_active": True,
            "loop_generation": loop_generation,
            "controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet),
            "control_guidance_start": float(controlnet_start_threshold),
            "control_guidance_end": float(controlnet_stop_threshold),
            "generator_in_cpu": generator_in_cpu,
            "FreeU": freeu,
            "adetailer_A": adetailer_active_a,
            "adetailer_A_params": adetailer_params_A,
            "adetailer_B": adetailer_active_b,
            "adetailer_B_params": adetailer_params_B,
            "leave_progress_bar": leave_progress_bar,
            "disable_progress_bar": disable_progress_bar,
            "image_previews": image_previews,
            "display_images": display_images,
            "save_generated_images": save_generated_images,
            "image_storage_location": image_storage_location,
            "retain_compel_previous_load": retain_compel_previous_load,
            "retain_detailfix_model_previous_load": retain_detailfix_model_previous_load,
            "retain_hires_model_previous_load": retain_hires_model_previous_load,
            "t2i_adapter_preprocessor": t2i_adapter_preprocessor,
            "t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale),
            "t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor),
            "upscaler_model_path": upscaler_model,
            "upscaler_increases_size": upscaler_increases_size,
            "esrgan_tile": esrgan_tile,
            "esrgan_tile_overlap": esrgan_tile_overlap,
            "hires_steps": hires_steps,
            "hires_denoising_strength": hires_denoising_strength,
            "hires_prompt": hires_prompt,
            "hires_negative_prompt": hires_negative_prompt,
            "hires_sampler": hires_sampler,
            "hires_before_adetailer": hires_before_adetailer,
            "hires_after_adetailer": hires_after_adetailer,
            "ip_adapter_image": params_ip_img,
            "ip_adapter_mask": params_ip_msk,
            "ip_adapter_model": params_ip_model,
            "ip_adapter_mode": params_ip_mode,
            "ip_adapter_scale": params_ip_scale,
        }

        # Maybe fix lora issue: 'Cannot copy out of meta tensor; no data!''
        self.model.pipe.to("cuda:0" if torch.cuda.is_available() else "cpu")

        progress(1, desc="Inference preparation completed. Starting inference...")

        info_state = f"PROCESSING "
        info_state += ">"
        info_state = f"COMPLETED. Seeds: {str(seed)}"
        if vae_msg:
            info_state = info_state + "<br>" + vae_msg
        if msg_lora:
            info_state = info_state + "<br>" + "<br>".join(msg_lora)
        return self.infer_short(self.model, pipe_params, progress), info_state
## END MOD


from pathlib import Path
from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path,
    get_local_model_list, get_private_lora_model_lists, get_valid_lora_name,
    get_valid_lora_path, get_valid_lora_wt, get_lora_info,
    normalize_prompt_list, get_civitai_info, search_lora_on_civitai)

sd_gen = GuiSD()
#@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,

           model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,

           lora3 = None, lora3_wt = 1.0, lora4 = None, lora4_wt = 1.0, lora5 = None, lora5_wt = 1.0,

           sampler = "Euler a", vae = None, progress=gr.Progress(track_tqdm=True)):
    import PIL
    import numpy as np
    MAX_SEED = np.iinfo(np.int32).max

    images: list[tuple[PIL.Image.Image, str | None]] = []
    info: str = ""
    progress(0, desc="Preparing...")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed).seed()

    prompt, negative_prompt = insert_model_recom_prompt(prompt, negative_prompt, model_name)
    progress(0.5, desc="Preparing...")
    lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt = \
        set_prompt_loras(prompt, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt)
    lora1 = get_valid_lora_path(lora1)
    lora2 = get_valid_lora_path(lora2)
    lora3 = get_valid_lora_path(lora3)
    lora4 = get_valid_lora_path(lora4)
    lora5 = get_valid_lora_path(lora5)
    progress(1, desc="Preparation completed. Starting inference preparation...")

    sd_gen.load_new_model(model_name, vae, task_model_list[0], progress)
    images, info = sd_gen.generate_pipeline(prompt, negative_prompt, 1, num_inference_steps,
        guidance_scale, True, generator, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt,
        lora4, lora4_wt, lora5, lora5_wt, sampler,
        height, width, model_name, vae, task_model_list[0], None, "Canny", 512, 1024,
        None, None, None, 0.35, 100, 200, 0.1, 0.1, 1.0, 0., 1., False, "Classic", None,
        1.0, 100, 10, 30, 0.55, "Use same sampler", "", "",
        False, True, 1, True, False, False, False, False, "./images", False, False, False, True, 1, 0.55,
        False, False, False, True, False, "Use same sampler", False, "", "", 0.35, True, True, False, 4, 4, 32,
        False, "", "", 0.35, True, True, False, 4, 4, 32,
        True, None, None, "plus_face", "original", 0.7, None, None, "base", "style", 0.7, progress
    )

    progress(1, desc="Inference completed.")
    output_image = images[0][0] if images else None

    return output_image


#@spaces.GPU
def _infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,

            model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,

            lora3 = None, lora3_wt = 1.0, lora4 = None, lora4_wt = 1.0, lora5 = None, lora5_wt = 1.0,

            sampler = "Euler a", vae = None, progress=gr.Progress(track_tqdm=True)):
    return gr.update(visible=True)


infer.zerogpu = True
_infer.zerogpu = True


def pass_result(result):
    return result


def get_samplers():
    return scheduler_names


def get_vaes():
    return vae_model_list


show_diffusers_model_list_detail = False
cached_diffusers_model_tupled_list = get_tupled_model_list(load_diffusers_format_model)
def get_diffusers_model_list():
    if show_diffusers_model_list_detail:
        return cached_diffusers_model_tupled_list
    else:
        return load_diffusers_format_model


def enable_diffusers_model_detail(is_enable: bool = False, model_name: str = ""):
    global show_diffusers_model_list_detail
    show_diffusers_model_list_detail = is_enable
    new_value = model_name
    index = 0
    if model_name in set(load_diffusers_format_model):
        index = load_diffusers_format_model.index(model_name)
    if is_enable:
        new_value = cached_diffusers_model_tupled_list[index][1]
    else:
        new_value = load_diffusers_format_model[index]
    return gr.update(value=is_enable), gr.update(value=new_value, choices=get_diffusers_model_list())


def get_t2i_model_info(repo_id: str):
    from huggingface_hub import HfApi
    api = HfApi()
    try:
        if " " in repo_id or not api.repo_exists(repo_id): return ""
        model = api.model_info(repo_id=repo_id)
    except Exception as e:
        print(f"Error: Failed to get {repo_id}'s info. ")
        return ""
    if model.private or model.gated: return ""
    tags = model.tags
    info = []
    url = f"https://huggingface.co/{repo_id}/"
    if not 'diffusers' in tags: return ""
    if 'diffusers:FluxPipeline' in tags:
        info.append("FLUX.1")
    elif 'diffusers:StableDiffusionXLPipeline' in tags:
        info.append("SDXL")
    elif 'diffusers:StableDiffusionPipeline' in tags:
        info.append("SD1.5")
    if model.card_data and model.card_data.tags:
        info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
    info.append(f"DLs: {model.downloads}")
    info.append(f"likes: {model.likes}")
    info.append(model.last_modified.strftime("lastmod: %Y-%m-%d"))
    md = f"Model Info: {', '.join(info)}, [Model Repo]({url})"
    return gr.update(value=md)


def load_model_prompt_dict():
    import json
    dict = {}
    try:
        with open('model_dict.json', encoding='utf-8') as f:
            dict = json.load(f)
    except Exception:
        pass
    return dict


model_prompt_dict = load_model_prompt_dict()


model_recom_prompt_enabled = True
animagine_ps = to_list("masterpiece, best quality, very aesthetic, absurdres")
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
pony_ps = to_list("score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
pony_nps = to_list("source_pony, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
other_ps = to_list("anime artwork, anime style, studio anime, highly detailed, cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed")
other_nps = to_list("photo, deformed, black and white, realism, disfigured, low contrast, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly")
default_ps = to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres")
default_nps = to_list("score_6, score_5, score_4, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
def insert_model_recom_prompt(prompt: str = "", neg_prompt: str = "", model_name: str = "None"):
    if not model_recom_prompt_enabled or not model_name: return prompt, neg_prompt
    prompts = to_list(prompt)
    neg_prompts = to_list(neg_prompt)
    prompts = list_sub(prompts, animagine_ps + pony_ps + other_ps)
    neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + other_nps)
    last_empty_p = [""] if not prompts and type != "None" else []
    last_empty_np = [""] if not neg_prompts and type != "None" else []
    ps = []
    nps = []
    if model_name in model_prompt_dict.keys(): 
        ps = to_list(model_prompt_dict[model_name]["prompt"])
        nps = to_list(model_prompt_dict[model_name]["negative_prompt"])
    else:
        ps = default_ps
        nps = default_nps
    prompts = prompts + ps
    neg_prompts = neg_prompts + nps
    prompt = ", ".join(list_uniq(prompts) + last_empty_p)
    neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
    return prompt, neg_prompt


def enable_model_recom_prompt(is_enable: bool = True):
    global model_recom_prompt_enabled
    model_recom_prompt_enabled = is_enable
    return is_enable


private_lora_dict = {}
try:
    with open('lora_dict.json', encoding='utf-8') as f:
        d = json.load(f)
        for k, v in d.items():
            private_lora_dict[escape_lora_basename(k)] = v
except Exception:
    pass


private_lora_model_list = get_private_lora_model_lists()
loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy()
loras_url_to_path_dict = {} # {"URL to download": "local filepath", ...}
civitai_lora_last_results = {}  # {"URL to download": {search results}, ...}
all_lora_list = []


def get_all_lora_list():
    global all_lora_list
    loras = get_lora_model_list()
    all_lora_list = loras.copy()
    return loras


def get_all_lora_tupled_list():
    global loras_dict
    models = get_all_lora_list()
    if not models: return []
    tupled_list = []
    for model in models:
        #if not model: continue # to avoid GUI-related bug
        basename = Path(model).stem
        key = to_lora_key(model)
        items = None
        if key in loras_dict.keys():
            items = loras_dict.get(key, None)
        else:
            items = get_civitai_info(model)
            if items != None:
                loras_dict[key] = items
        name = basename
        value = model
        if items and items[2] != "":
            if items[1] == "Pony":
                name = f"{basename} (for {items[1]}🐴, {items[2]})"
            else:
                name = f"{basename} (for {items[1]}, {items[2]})"
        tupled_list.append((name, value))
    return tupled_list


def update_lora_dict(path: str):
    global loras_dict
    key = to_lora_key(path)
    if key in loras_dict.keys(): return
    items = get_civitai_info(path)
    if items == None: return
    loras_dict[key] = items


def download_lora(dl_urls: str):
    global loras_url_to_path_dict
    dl_path = ""
    before = get_local_model_list(directory_loras)
    urls = []
    for url in [url.strip() for url in dl_urls.split(',')]:
        local_path = f"{directory_loras}/{url.split('/')[-1]}"
        if not Path(local_path).exists():
            download_things(directory_loras, url, hf_token, CIVITAI_API_KEY)
            urls.append(url)
    after = get_local_model_list(directory_loras)
    new_files = list_sub(after, before)
    i = 0
    for file in new_files:
        path = Path(file)
        if path.exists():
            new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
            path.resolve().rename(new_path.resolve())
            loras_url_to_path_dict[urls[i]] = str(new_path)
            update_lora_dict(str(new_path))
            dl_path = str(new_path)
        i += 1
    return dl_path


def copy_lora(path: str, new_path: str):
    import shutil
    if path == new_path: return new_path
    cpath = Path(path)
    npath = Path(new_path)
    if cpath.exists():
        try:
            shutil.copy(str(cpath.resolve()), str(npath.resolve()))
        except Exception:
            return None
        update_lora_dict(str(npath))
        return new_path
    else:
        return None


def download_my_lora(dl_urls: str, lora1: str, lora2: str, lora3: str, lora4: str, lora5: str):
    path = download_lora(dl_urls)
    if path:
        if not lora1 or lora1 == "None":
            lora1 = path
        elif not lora2 or lora2 == "None":
            lora2 = path
        elif not lora3 or lora3 == "None":
            lora3 = path
        elif not lora4 or lora4 == "None":
            lora4 = path
        elif not lora5 or lora5 == "None":
            lora5 = path
    choices = get_all_lora_tupled_list()
    return gr.update(value=lora1, choices=choices), gr.update(value=lora2, choices=choices), gr.update(value=lora3, choices=choices),\
        gr.update(value=lora4, choices=choices), gr.update(value=lora5, choices=choices)


def set_prompt_loras(prompt, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
    import re
    lora1 = get_valid_lora_name(lora1)
    lora2 = get_valid_lora_name(lora2)
    lora3 = get_valid_lora_name(lora3)
    lora4 = get_valid_lora_name(lora4)
    lora5 = get_valid_lora_name(lora5)
    if not "<lora" in prompt: return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
    lora1_wt = get_valid_lora_wt(prompt, lora1, lora1_wt)
    lora2_wt = get_valid_lora_wt(prompt, lora2, lora2_wt)
    lora3_wt = get_valid_lora_wt(prompt, lora3, lora3_wt)
    lora4_wt = get_valid_lora_wt(prompt, lora4, lora4_wt)
    lora5_wt = get_valid_lora_wt(prompt, lora5, lora5_wt)
    on1, label1, tag1, md1 = get_lora_info(lora1)
    on2, label2, tag2, md2 = get_lora_info(lora2)
    on3, label3, tag3, md3 = get_lora_info(lora3)
    on4, label4, tag4, md4 = get_lora_info(lora4)
    on5, label5, tag5, md5 = get_lora_info(lora5)
    lora_paths = [lora1, lora2, lora3, lora4, lora5]
    prompts = prompt.split(",") if prompt else []
    for p in prompts:
        p = str(p).strip()
        if "<lora" in p:
            result = re.findall(r'<lora:(.+?):(.+?)>', p)
            if not result: continue
            key = result[0][0]
            wt = result[0][1]
            path = to_lora_path(key)
            if not key in loras_dict.keys() or not path:
                path = get_valid_lora_name(path)
                if not path or path == "None": continue
            if path in lora_paths:
                continue
            elif not on1:
                lora1 = path
                lora_paths = [lora1, lora2, lora3, lora4, lora5]
                lora1_wt = safe_float(wt)
                on1 = True
            elif not on2:
                lora2 = path
                lora_paths = [lora1, lora2, lora3, lora4, lora5]
                lora2_wt = safe_float(wt)
                on2 = True
            elif not on3:
                lora3 = path
                lora_paths = [lora1, lora2, lora3, lora4, lora5]
                lora3_wt = safe_float(wt)
                on3 = True
            elif not on4:
                lora4 = path
                lora_paths = [lora1, lora2, lora3, lora4, lora5]
                lora4_wt = safe_float(wt)
                on4, label4, tag4, md4 = get_lora_info(lora4)
            elif not on5:
                lora5 = path
                lora_paths = [lora1, lora2, lora3, lora4, lora5]
                lora5_wt = safe_float(wt)
                on5 = True
    return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt


def apply_lora_prompt(prompt: str, lora_info: str):
    if lora_info == "None": return gr.update(value=prompt)
    tags = prompt.split(",") if prompt else []
    prompts = normalize_prompt_list(tags)
    lora_tag = lora_info.replace("/",",")
    lora_tags = lora_tag.split(",") if str(lora_info) != "None" else []
    lora_prompts = normalize_prompt_list(lora_tags)
    empty = [""]
    prompt = ", ".join(list_uniq(prompts + lora_prompts) + empty)
    return gr.update(value=prompt)


def update_loras(prompt, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
    import re
    on1, label1, tag1, md1 = get_lora_info(lora1)
    on2, label2, tag2, md2 = get_lora_info(lora2)
    on3, label3, tag3, md3 = get_lora_info(lora3)
    on4, label4, tag4, md4 = get_lora_info(lora4)
    on5, label5, tag5, md5 = get_lora_info(lora5)
    lora_paths = [lora1, lora2, lora3, lora4, lora5]
    prompts = prompt.split(",") if prompt else []
    output_prompts = []
    for p in prompts:
        p = str(p).strip()
        if "<lora" in p:
            result = re.findall(r'<lora:(.+?):(.+?)>', p)
            if not result: continue
            key = result[0][0]
            wt = result[0][1]
            path = to_lora_path(key)
            if not key in loras_dict.keys() or not path: continue
            if path in lora_paths:
                output_prompts.append(f"<lora:{to_lora_key(path)}:{safe_float(wt):.2f}>")
        elif p:
            output_prompts.append(p)
    lora_prompts = []
    if on1: lora_prompts.append(f"<lora:{to_lora_key(lora1)}:{lora1_wt:.2f}>")
    if on2: lora_prompts.append(f"<lora:{to_lora_key(lora2)}:{lora2_wt:.2f}>")
    if on3: lora_prompts.append(f"<lora:{to_lora_key(lora3)}:{lora3_wt:.2f}>")
    if on4: lora_prompts.append(f"<lora:{to_lora_key(lora4)}:{lora4_wt:.2f}>")
    if on5: lora_prompts.append(f"<lora:{to_lora_key(lora5)}:{lora5_wt:.2f}>")
    output_prompt = ", ".join(list_uniq(output_prompts + lora_prompts + [""]))
    choices = get_all_lora_tupled_list()
    return gr.update(value=output_prompt), gr.update(value=lora1, choices=choices), gr.update(value=lora1_wt),\
     gr.update(value=tag1, label=label1, visible=on1), gr.update(visible=on1), gr.update(value=md1, visible=on1),\
     gr.update(value=lora2, choices=choices), gr.update(value=lora2_wt),\
     gr.update(value=tag2, label=label2, visible=on2), gr.update(visible=on2), gr.update(value=md2, visible=on2),\
     gr.update(value=lora3, choices=choices), gr.update(value=lora3_wt),\
     gr.update(value=tag3, label=label3, visible=on3), gr.update(visible=on3), gr.update(value=md3, visible=on3),\
     gr.update(value=lora4, choices=choices), gr.update(value=lora4_wt),\
     gr.update(value=tag4, label=label4, visible=on4), gr.update(visible=on4), gr.update(value=md4, visible=on4),\
     gr.update(value=lora5, choices=choices), gr.update(value=lora5_wt),\
     gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5)


def search_civitai_lora(query, base_model):
    global civitai_lora_last_results
    items = search_lora_on_civitai(query, base_model)
    if not items: return gr.update(choices=[("", "")], value="", visible=False),\
          gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
    civitai_lora_last_results = {}
    choices = []
    for item in items:
        base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
        name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
        value = item['dl_url']
        choices.append((name, value))
        civitai_lora_last_results[value] = item
    if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
          gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
    result = civitai_lora_last_results.get(choices[0][1], "None")
    md = result['md'] if result else ""
    return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
          gr.update(visible=True), gr.update(visible=True)


def select_civitai_lora(search_result):
    if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
    result = civitai_lora_last_results.get(search_result, "None")
    md = result['md'] if result else ""
    return gr.update(value=search_result), gr.update(value=md, visible=True)


def search_civitai_lora_json(query, base_model):
    results = {}
    items = search_lora_on_civitai(query, base_model)
    if not items: return gr.update(value=results)
    for item in items:
        results[item['dl_url']] = item
    return gr.update(value=results)


quality_prompt_list = [
    {
        "name": "None",
        "prompt": "",
        "negative_prompt": "lowres",
    },
    {
        "name": "Animagine Common",
        "prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres",
        "negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
    },
    {
        "name": "Pony Anime Common",
        "prompt": "source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres",
        "negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
    },
    {
        "name": "Pony Common",
        "prompt": "source_anime, score_9, score_8_up, score_7_up",
        "negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
    },
    {
        "name": "Animagine Standard v3.0",
        "prompt": "masterpiece, best quality",
        "negative_prompt": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name",
    },
    {
        "name": "Animagine Standard v3.1",
        "prompt": "masterpiece, best quality, very aesthetic, absurdres",
        "negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
    },
    {
        "name": "Animagine Light v3.1",
        "prompt": "(masterpiece), best quality, very aesthetic, perfect face",
        "negative_prompt": "(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn",
    },
    {
        "name": "Animagine Heavy v3.1",
        "prompt": "(masterpiece), (best quality), (ultra-detailed), very aesthetic, illustration, disheveled hair, perfect composition, moist skin, intricate details",
        "negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair, extra digit, fewer digits, cropped, worst quality, low quality, very displeasing",
    },
]


style_list = [
    {
        "name": "None",
        "prompt": "",
        "negative_prompt": "",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still, emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
        "negative_prompt": "cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
    },
    {
        "name": "Photographic",
        "prompt": "cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed",
        "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed",
        "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
    },
    {
        "name": "Manga",
        "prompt": "manga style, vibrant, high-energy, detailed, iconic, Japanese comic style",
        "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
    },
    {
        "name": "Digital Art",
        "prompt": "concept art, digital artwork, illustrative, painterly, matte painting, highly detailed",
        "negative_prompt": "photo, photorealistic, realism, ugly",
    },
    {
        "name": "Pixel art",
        "prompt": "pixel-art, low-res, blocky, pixel art style, 8-bit graphics",
        "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
    },
    {
        "name": "Fantasy art",
        "prompt": "ethereal fantasy concept art, magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
        "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
    },
    {
        "name": "Neonpunk",
        "prompt": "neonpunk style, cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
        "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model, octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
]


preset_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
preset_quality = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in quality_prompt_list}


def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None"):
    def to_list(s):
        return [x.strip() for x in s.split(",") if not s == ""]
    
    def list_sub(a, b):
        return [e for e in a if e not in b]
    
    def list_uniq(l):
        return sorted(set(l), key=l.index)

    animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres")
    animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
    pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
    pony_nps = to_list("source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
    prompts = to_list(prompt)
    neg_prompts = to_list(neg_prompt)

    all_styles_ps = []
    all_styles_nps = []
    for d in style_list:
        all_styles_ps.extend(to_list(str(d.get("prompt", ""))))
        all_styles_nps.extend(to_list(str(d.get("negative_prompt", ""))))

    all_quality_ps = []
    all_quality_nps = []
    for d in quality_prompt_list:
        all_quality_ps.extend(to_list(str(d.get("prompt", ""))))
        all_quality_nps.extend(to_list(str(d.get("negative_prompt", ""))))

    quality_ps = to_list(preset_quality[quality_key][0])
    quality_nps = to_list(preset_quality[quality_key][1])
    styles_ps = to_list(preset_styles[styles_key][0])
    styles_nps = to_list(preset_styles[styles_key][1])

    prompts = list_sub(prompts, animagine_ps + pony_ps + all_styles_ps + all_quality_ps)
    neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + all_styles_nps + all_quality_nps)

    last_empty_p = [""] if not prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else []
    last_empty_np = [""] if not neg_prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else []

    if type == "Animagine":
        prompts = prompts + animagine_ps
        neg_prompts = neg_prompts + animagine_nps
    elif type == "Pony":
        prompts = prompts + pony_ps
        neg_prompts = neg_prompts + pony_nps

    prompts = prompts + styles_ps + quality_ps
    neg_prompts = neg_prompts + styles_nps + quality_nps

    prompt = ", ".join(list_uniq(prompts) + last_empty_p)
    neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)

    return gr.update(value=prompt), gr.update(value=neg_prompt)