Spaces:
Running
on
Zero
Running
on
Zero
File size: 55,089 Bytes
9ee2570 27218a1 9ee2570 27218a1 9ee2570 9ee7707 9ee2570 1f682f8 9ee2570 27218a1 9ee2570 27218a1 9ee2570 27218a1 9ee2570 27218a1 9ee2570 1f682f8 9ee2570 27218a1 9ee2570 27218a1 9ee2570 1f682f8 9ee2570 40ea453 9ee2570 1f682f8 9ee2570 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 |
import spaces
import os
from stablepy import Model_Diffusers
from stablepy.diffusers_vanilla.model import scheduler_names
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
import torch
import re
import shutil
import random
from stablepy import (
CONTROLNET_MODEL_IDS,
VALID_TASKS,
T2I_PREPROCESSOR_NAME,
FLASH_LORA,
SCHEDULER_CONFIG_MAP,
scheduler_names,
IP_ADAPTER_MODELS,
IP_ADAPTERS_SD,
IP_ADAPTERS_SDXL,
REPO_IMAGE_ENCODER,
ALL_PROMPT_WEIGHT_OPTIONS,
SD15_TASKS,
SDXL_TASKS,
)
import urllib.parse
import gradio as gr
from PIL import Image
import IPython.display
import time, json
from IPython.utils import capture
import logging
logging.getLogger("diffusers").setLevel(logging.ERROR)
import diffusers
diffusers.utils.logging.set_verbosity(40)
import warnings
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
from stablepy import logger
logger.setLevel(logging.CRITICAL)
from env import (
hf_token, hf_read_token, # to use only for private repos
CIVITAI_API_KEY, HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO,
HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
directory_models, directory_loras, directory_vaes, directory_embeds,
directory_embeds_sdxl, directory_embeds_positive_sdxl,
load_diffusers_format_model, download_model_list, download_lora_list,
download_vae_list, download_embeds)
preprocessor_controlnet = {
"openpose": [
"Openpose",
"None",
],
"scribble": [
"HED",
"Pidinet",
"None",
],
"softedge": [
"Pidinet",
"HED",
"HED safe",
"Pidinet safe",
"None",
],
"segmentation": [
"UPerNet",
"None",
],
"depth": [
"DPT",
"Midas",
"None",
],
"normalbae": [
"NormalBae",
"None",
],
"lineart": [
"Lineart",
"Lineart coarse",
"Lineart (anime)",
"None",
"None (anime)",
],
"shuffle": [
"ContentShuffle",
"None",
],
"canny": [
"Canny"
],
"mlsd": [
"MLSD"
],
"ip2p": [
"ip2p"
],
}
task_stablepy = {
'txt2img': 'txt2img',
'img2img': 'img2img',
'inpaint': 'inpaint',
# 'canny T2I Adapter': 'sdxl_canny_t2i', # NO HAVE STEP CALLBACK PARAMETERS SO NOT WORKS WITH DIFFUSERS 0.29.0
# 'sketch T2I Adapter': 'sdxl_sketch_t2i',
# 'lineart T2I Adapter': 'sdxl_lineart_t2i',
# 'depth-midas T2I Adapter': 'sdxl_depth-midas_t2i',
# 'openpose T2I Adapter': 'sdxl_openpose_t2i',
'openpose ControlNet': 'openpose',
'canny ControlNet': 'canny',
'mlsd ControlNet': 'mlsd',
'scribble ControlNet': 'scribble',
'softedge ControlNet': 'softedge',
'segmentation ControlNet': 'segmentation',
'depth ControlNet': 'depth',
'normalbae ControlNet': 'normalbae',
'lineart ControlNet': 'lineart',
# 'lineart_anime ControlNet': 'lineart_anime',
'shuffle ControlNet': 'shuffle',
'ip2p ControlNet': 'ip2p',
'optical pattern ControlNet': 'pattern',
'tile realistic': 'sdxl_tile_realistic',
}
task_model_list = list(task_stablepy.keys())
def download_things(directory, url, hf_token="", civitai_api_key=""):
url = url.strip()
if "drive.google.com" in url:
original_dir = os.getcwd()
os.chdir(directory)
os.system(f"gdown --fuzzy {url}")
os.chdir(original_dir)
elif "huggingface.co" in url:
url = url.replace("?download=true", "")
# url = urllib.parse.quote(url, safe=':/') # fix encoding
if "/blob/" in url:
url = url.replace("/blob/", "/resolve/")
user_header = f'"Authorization: Bearer {hf_token}"'
if hf_token:
os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
else:
os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
elif "civitai.com" in url:
if "?" in url:
url = url.split("?")[0]
if civitai_api_key:
url = url + f"?token={civitai_api_key}"
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
else:
print("\033[91mYou need an API key to download Civitai models.\033[0m")
else:
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
def get_model_list(directory_path):
model_list = []
valid_extensions = {'.ckpt' , '.pt', '.pth', '.safetensors', '.bin'}
for filename in os.listdir(directory_path):
if os.path.splitext(filename)[1] in valid_extensions:
name_without_extension = os.path.splitext(filename)[0]
file_path = os.path.join(directory_path, filename)
# model_list.append((name_without_extension, file_path))
model_list.append(file_path)
print('\033[34mFILE: ' + file_path + '\033[0m')
return model_list
def process_string(input_string):
parts = input_string.split('/')
if len(parts) == 2:
first_element = parts[1]
complete_string = input_string
result = (first_element, complete_string)
return result
else:
return None
## BEGIN MOD
from modutils import (to_list, list_uniq, list_sub, get_model_id_list, get_tupled_embed_list,
get_tupled_model_list, get_lora_model_list, download_private_repo)
# - **Download Models**
download_model = ", ".join(download_model_list)
# - **Download VAEs**
download_vae = ", ".join(download_vae_list)
# - **Download LoRAs**
download_lora = ", ".join(download_lora_list)
#download_private_repo(HF_LORA_ESSENTIAL_PRIVATE_REPO, directory_loras, True)
download_private_repo(HF_VAE_PRIVATE_REPO, directory_vaes, False)
load_diffusers_format_model = list_uniq(load_diffusers_format_model + get_model_id_list())
## END MOD
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
hf_token = os.environ.get("HF_TOKEN")
# Download stuffs
for url in [url.strip() for url in download_model.split(',')]:
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
download_things(directory_models, url, hf_token, CIVITAI_API_KEY)
for url in [url.strip() for url in download_vae.split(',')]:
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
download_things(directory_vaes, url, hf_token, CIVITAI_API_KEY)
for url in [url.strip() for url in download_lora.split(',')]:
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
download_things(directory_loras, url, hf_token, CIVITAI_API_KEY)
# Download Embeddings
for url_embed in download_embeds:
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
download_things(directory_embeds, url_embed, hf_token, CIVITAI_API_KEY)
# Build list models
embed_list = get_model_list(directory_embeds)
model_list = get_model_list(directory_models)
model_list = load_diffusers_format_model + model_list
## BEGIN MOD
lora_model_list = get_lora_model_list()
vae_model_list = get_model_list(directory_vaes)
vae_model_list.insert(0, "None")
#download_private_repo(HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, directory_embeds_sdxl, False)
#download_private_repo(HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO, directory_embeds_positive_sdxl, False)
embed_sdxl_list = get_model_list(directory_embeds_sdxl) + get_model_list(directory_embeds_positive_sdxl)
def get_embed_list(pipeline_name):
return get_tupled_embed_list(embed_sdxl_list if pipeline_name == "StableDiffusionXLPipeline" else embed_list)
## END MOD
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
upscaler_dict_gui = {
None : None,
"Lanczos" : "Lanczos",
"Nearest" : "Nearest",
"RealESRGAN_x4plus" : "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
"RealESRNet_x4plus" : "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth",
"RealESRGAN_x4plus_anime_6B": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
"RealESRGAN_x2plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
"realesr-animevideov3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
"realesr-general-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
"realesr-general-wdn-x4v3" : "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
"4x-UltraSharp" : "https://huggingface.co/Shandypur/ESRGAN-4x-UltraSharp/resolve/main/4x-UltraSharp.pth",
"4x_foolhardy_Remacri" : "https://huggingface.co/FacehugmanIII/4x_foolhardy_Remacri/resolve/main/4x_foolhardy_Remacri.pth",
"Remacri4xExtraSmoother" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/Remacri%204x%20ExtraSmoother.pth",
"AnimeSharp4x" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/AnimeSharp%204x.pth",
"lollypop" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/lollypop.pth",
"RealisticRescaler4x" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/RealisticRescaler%204x.pth",
"NickelbackFS4x" : "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/NickelbackFS%204x.pth"
}
def extract_parameters(input_string):
parameters = {}
input_string = input_string.replace("\n", "")
if not "Negative prompt:" in input_string:
print("Negative prompt not detected")
parameters["prompt"] = input_string
return parameters
parm = input_string.split("Negative prompt:")
parameters["prompt"] = parm[0]
if not "Steps:" in parm[1]:
print("Steps not detected")
parameters["neg_prompt"] = parm[1]
return parameters
parm = parm[1].split("Steps:")
parameters["neg_prompt"] = parm[0]
input_string = "Steps:" + parm[1]
# Extracting Steps
steps_match = re.search(r'Steps: (\d+)', input_string)
if steps_match:
parameters['Steps'] = int(steps_match.group(1))
# Extracting Size
size_match = re.search(r'Size: (\d+x\d+)', input_string)
if size_match:
parameters['Size'] = size_match.group(1)
width, height = map(int, parameters['Size'].split('x'))
parameters['width'] = width
parameters['height'] = height
# Extracting other parameters
other_parameters = re.findall(r'(\w+): (.*?)(?=, \w+|$)', input_string)
for param in other_parameters:
parameters[param[0]] = param[1].strip('"')
return parameters
## BEGIN MOD
class GuiSD:
def __init__(self):
self.model = None
print("Loading model...")
self.model = Model_Diffusers(
base_model_id="cagliostrolab/animagine-xl-3.1",
task_name="txt2img",
vae_model=None,
type_model_precision=torch.float16,
retain_task_model_in_cache=False,
#device="cpu",
)
self.model.device = torch.device("cpu") #
def infer_short(self, model, pipe_params, progress=gr.Progress(track_tqdm=True)):
progress(0, desc="Start inference...")
images, image_list = model(**pipe_params)
progress(1, desc="Inference completed.")
if not isinstance(images, list): images = [images]
img = []
for image in images:
img.append((image, None))
return img
def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):
yield f"Loading model: {model_name}"
vae_model = vae_model if vae_model != "None" else None
if model_name in model_list:
model_is_xl = "xl" in model_name.lower()
sdxl_in_vae = vae_model and "sdxl" in vae_model.lower()
model_type = "SDXL" if model_is_xl else "SD 1.5"
incompatible_vae = (model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae)
if incompatible_vae:
vae_model = None
self.model.device = torch.device("cpu")
self.model.load_pipe(
model_name,
task_name=task_stablepy[task],
vae_model=vae_model if vae_model != "None" else None,
type_model_precision=torch.float16,
retain_task_model_in_cache=False,
)
yield f"Model loaded: {model_name}"
@spaces.GPU
def generate_pipeline(
self,
prompt,
neg_prompt,
num_images,
steps,
cfg,
clip_skip,
seed,
lora1,
lora_scale1,
lora2,
lora_scale2,
lora3,
lora_scale3,
lora4,
lora_scale4,
lora5,
lora_scale5,
sampler,
img_height,
img_width,
model_name,
vae_model,
task,
image_control,
preprocessor_name,
preprocess_resolution,
image_resolution,
style_prompt, # list []
style_json_file,
image_mask,
strength,
low_threshold,
high_threshold,
value_threshold,
distance_threshold,
controlnet_output_scaling_in_unet,
controlnet_start_threshold,
controlnet_stop_threshold,
textual_inversion,
syntax_weights,
upscaler_model_path,
upscaler_increases_size,
esrgan_tile,
esrgan_tile_overlap,
hires_steps,
hires_denoising_strength,
hires_sampler,
hires_prompt,
hires_negative_prompt,
hires_before_adetailer,
hires_after_adetailer,
loop_generation,
leave_progress_bar,
disable_progress_bar,
image_previews,
display_images,
save_generated_images,
image_storage_location,
retain_compel_previous_load,
retain_detailfix_model_previous_load,
retain_hires_model_previous_load,
t2i_adapter_preprocessor,
t2i_adapter_conditioning_scale,
t2i_adapter_conditioning_factor,
xformers_memory_efficient_attention,
freeu,
generator_in_cpu,
adetailer_inpaint_only,
adetailer_verbose,
adetailer_sampler,
adetailer_active_a,
prompt_ad_a,
negative_prompt_ad_a,
strength_ad_a,
face_detector_ad_a,
person_detector_ad_a,
hand_detector_ad_a,
mask_dilation_a,
mask_blur_a,
mask_padding_a,
adetailer_active_b,
prompt_ad_b,
negative_prompt_ad_b,
strength_ad_b,
face_detector_ad_b,
person_detector_ad_b,
hand_detector_ad_b,
mask_dilation_b,
mask_blur_b,
mask_padding_b,
retain_task_cache_gui,
image_ip1,
mask_ip1,
model_ip1,
mode_ip1,
scale_ip1,
image_ip2,
mask_ip2,
model_ip2,
mode_ip2,
scale_ip2,
progress=gr.Progress(track_tqdm=True),
):
progress(0, desc="Preparing inference...")
vae_model = vae_model if vae_model != "None" else None
loras_list = [lora1, lora2, lora3, lora4, lora5]
vae_msg = f"VAE: {vae_model}" if vae_model else ""
msg_lora = []
## BEGIN MOD
prompt, neg_prompt = insert_model_recom_prompt(prompt, neg_prompt, model_name)
global lora_model_list
lora_model_list = get_lora_model_list()
## END MOD
if model_name in model_list:
model_is_xl = "xl" in model_name.lower()
sdxl_in_vae = vae_model and "sdxl" in vae_model.lower()
model_type = "SDXL" if model_is_xl else "SD 1.5"
incompatible_vae = (model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae)
if incompatible_vae:
msg_inc_vae = (
f"The selected VAE is for a { 'SD 1.5' if model_is_xl else 'SDXL' } model, but you"
f" are using a { model_type } model. The default VAE "
"will be used."
)
gr.Info(msg_inc_vae)
vae_msg = msg_inc_vae
vae_model = None
for la in loras_list:
if la is not None and la != "None" and la in lora_model_list:
print(la)
lora_type = ("animetarot" in la.lower() or "Hyper-SD15-8steps".lower() in la.lower())
if (model_is_xl and lora_type) or (not model_is_xl and not lora_type):
msg_inc_lora = f"The LoRA {la} is for { 'SD 1.5' if model_is_xl else 'SDXL' }, but you are using { model_type }."
gr.Info(msg_inc_lora)
msg_lora.append(msg_inc_lora)
task = task_stablepy[task]
params_ip_img = []
params_ip_msk = []
params_ip_model = []
params_ip_mode = []
params_ip_scale = []
all_adapters = [
(image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1),
(image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2),
]
for imgip, mskip, modelip, modeip, scaleip in all_adapters:
if imgip:
params_ip_img.append(imgip)
if mskip:
params_ip_msk.append(mskip)
params_ip_model.append(modelip)
params_ip_mode.append(modeip)
params_ip_scale.append(scaleip)
# First load
self.model.device = torch.device("cuda:0")
model_precision = torch.float16
if not self.model:
from stablepy import Model_Diffusers
print("Loading model...")
self.model = Model_Diffusers(
base_model_id=model_name,
task_name=task,
vae_model=vae_model if vae_model != "None" else None,
type_model_precision=model_precision,
retain_task_model_in_cache=retain_task_cache_gui,
)
if task != "txt2img" and not image_control:
raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'")
if task == "inpaint" and not image_mask:
raise ValueError("No mask image found: Specify one in 'Image Mask'")
if upscaler_model_path in [None, "Lanczos", "Nearest"]:
upscaler_model = upscaler_model_path
else:
directory_upscalers = 'upscalers'
os.makedirs(directory_upscalers, exist_ok=True)
url_upscaler = upscaler_dict_gui[upscaler_model_path]
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
download_things(directory_upscalers, url_upscaler, hf_token)
upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}"
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)
print("Config model:", model_name, vae_model, loras_list)
self.model.load_pipe(
model_name,
task_name=task,
vae_model=vae_model if vae_model != "None" else None,
type_model_precision=model_precision,
retain_task_model_in_cache=retain_task_cache_gui,
)
## BEGIN MOD
# if textual_inversion and self.model.class_name == "StableDiffusionXLPipeline":
# print("No Textual inversion for SDXL")
## END MOD
adetailer_params_A = {
"face_detector_ad" : face_detector_ad_a,
"person_detector_ad" : person_detector_ad_a,
"hand_detector_ad" : hand_detector_ad_a,
"prompt": prompt_ad_a,
"negative_prompt" : negative_prompt_ad_a,
"strength" : strength_ad_a,
# "image_list_task" : None,
"mask_dilation" : mask_dilation_a,
"mask_blur" : mask_blur_a,
"mask_padding" : mask_padding_a,
"inpaint_only" : adetailer_inpaint_only,
"sampler" : adetailer_sampler,
}
adetailer_params_B = {
"face_detector_ad" : face_detector_ad_b,
"person_detector_ad" : person_detector_ad_b,
"hand_detector_ad" : hand_detector_ad_b,
"prompt": prompt_ad_b,
"negative_prompt" : negative_prompt_ad_b,
"strength" : strength_ad_b,
# "image_list_task" : None,
"mask_dilation" : mask_dilation_b,
"mask_blur" : mask_blur_b,
"mask_padding" : mask_padding_b,
}
pipe_params = {
"prompt": prompt,
"negative_prompt": neg_prompt,
"img_height": img_height,
"img_width": img_width,
"num_images": num_images,
"num_steps": steps,
"guidance_scale": cfg,
"clip_skip": clip_skip,
"seed": seed,
"image": image_control,
"preprocessor_name": preprocessor_name,
"preprocess_resolution": preprocess_resolution,
"image_resolution": image_resolution,
"style_prompt": style_prompt if style_prompt else "",
"style_json_file": "",
"image_mask": image_mask, # only for Inpaint
"strength": strength, # only for Inpaint or ...
"low_threshold": low_threshold,
"high_threshold": high_threshold,
"value_threshold": value_threshold,
"distance_threshold": distance_threshold,
"lora_A": lora1 if lora1 != "None" else None,
"lora_scale_A": lora_scale1,
"lora_B": lora2 if lora2 != "None" else None,
"lora_scale_B": lora_scale2,
"lora_C": lora3 if lora3 != "None" else None,
"lora_scale_C": lora_scale3,
"lora_D": lora4 if lora4 != "None" else None,
"lora_scale_D": lora_scale4,
"lora_E": lora5 if lora5 != "None" else None,
"lora_scale_E": lora_scale5,
## BEGIN MOD
"textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [],
## END MOD
"syntax_weights": syntax_weights, # "Classic"
"sampler": sampler,
"xformers_memory_efficient_attention": xformers_memory_efficient_attention,
"gui_active": True,
"loop_generation": loop_generation,
"controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet),
"control_guidance_start": float(controlnet_start_threshold),
"control_guidance_end": float(controlnet_stop_threshold),
"generator_in_cpu": generator_in_cpu,
"FreeU": freeu,
"adetailer_A": adetailer_active_a,
"adetailer_A_params": adetailer_params_A,
"adetailer_B": adetailer_active_b,
"adetailer_B_params": adetailer_params_B,
"leave_progress_bar": leave_progress_bar,
"disable_progress_bar": disable_progress_bar,
"image_previews": image_previews,
"display_images": display_images,
"save_generated_images": save_generated_images,
"image_storage_location": image_storage_location,
"retain_compel_previous_load": retain_compel_previous_load,
"retain_detailfix_model_previous_load": retain_detailfix_model_previous_load,
"retain_hires_model_previous_load": retain_hires_model_previous_load,
"t2i_adapter_preprocessor": t2i_adapter_preprocessor,
"t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale),
"t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor),
"upscaler_model_path": upscaler_model,
"upscaler_increases_size": upscaler_increases_size,
"esrgan_tile": esrgan_tile,
"esrgan_tile_overlap": esrgan_tile_overlap,
"hires_steps": hires_steps,
"hires_denoising_strength": hires_denoising_strength,
"hires_prompt": hires_prompt,
"hires_negative_prompt": hires_negative_prompt,
"hires_sampler": hires_sampler,
"hires_before_adetailer": hires_before_adetailer,
"hires_after_adetailer": hires_after_adetailer,
"ip_adapter_image": params_ip_img,
"ip_adapter_mask": params_ip_msk,
"ip_adapter_model": params_ip_model,
"ip_adapter_mode": params_ip_mode,
"ip_adapter_scale": params_ip_scale,
}
# Maybe fix lora issue: 'Cannot copy out of meta tensor; no data!''
self.model.pipe.to("cuda:0" if torch.cuda.is_available() else "cpu")
progress(1, desc="Inference preparation completed. Starting inference...")
info_state = f"PROCESSING "
info_state += ">"
info_state = f"COMPLETED. Seeds: {str(seed)}"
if vae_msg:
info_state = info_state + "<br>" + vae_msg
if msg_lora:
info_state = info_state + "<br>" + "<br>".join(msg_lora)
return self.infer_short(self.model, pipe_params, progress), info_state
## END MOD
from pathlib import Path
from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path,
get_local_model_list, get_private_lora_model_lists, get_valid_lora_name,
get_valid_lora_path, get_valid_lora_wt, get_lora_info,
normalize_prompt_list, get_civitai_info, search_lora_on_civitai)
sd_gen = GuiSD()
#@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
lora3 = None, lora3_wt = 1.0, lora4 = None, lora4_wt = 1.0, lora5 = None, lora5_wt = 1.0,
sampler = "Euler a", vae = None, progress=gr.Progress(track_tqdm=True)):
import PIL
import numpy as np
MAX_SEED = np.iinfo(np.int32).max
images: list[tuple[PIL.Image.Image, str | None]] = []
info: str = ""
progress(0, desc="Preparing...")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed).seed()
prompt, negative_prompt = insert_model_recom_prompt(prompt, negative_prompt, model_name)
progress(0.5, desc="Preparing...")
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt = \
set_prompt_loras(prompt, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt)
lora1 = get_valid_lora_path(lora1)
lora2 = get_valid_lora_path(lora2)
lora3 = get_valid_lora_path(lora3)
lora4 = get_valid_lora_path(lora4)
lora5 = get_valid_lora_path(lora5)
progress(1, desc="Preparation completed. Starting inference preparation...")
sd_gen.load_new_model(model_name, vae, task_model_list[0], progress)
images, info = sd_gen.generate_pipeline(prompt, negative_prompt, 1, num_inference_steps,
guidance_scale, True, generator, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt,
lora4, lora4_wt, lora5, lora5_wt, sampler,
height, width, model_name, vae, task_model_list[0], None, "Canny", 512, 1024,
None, None, None, 0.35, 100, 200, 0.1, 0.1, 1.0, 0., 1., False, "Classic", None,
1.0, 100, 10, 30, 0.55, "Use same sampler", "", "",
False, True, 1, True, False, False, False, False, "./images", False, False, False, True, 1, 0.55,
False, False, False, True, False, "Use same sampler", False, "", "", 0.35, True, True, False, 4, 4, 32,
False, "", "", 0.35, True, True, False, 4, 4, 32,
True, None, None, "plus_face", "original", 0.7, None, None, "base", "style", 0.7, progress
)
progress(1, desc="Inference completed.")
output_image = images[0][0] if images else None
return output_image
#@spaces.GPU
def _infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
model_name = load_diffusers_format_model[0], lora1 = None, lora1_wt = 1.0, lora2 = None, lora2_wt = 1.0,
lora3 = None, lora3_wt = 1.0, lora4 = None, lora4_wt = 1.0, lora5 = None, lora5_wt = 1.0,
sampler = "Euler a", vae = None, progress=gr.Progress(track_tqdm=True)):
return gr.update(visible=True)
infer.zerogpu = True
_infer.zerogpu = True
def pass_result(result):
return result
def get_samplers():
return scheduler_names
def get_vaes():
return vae_model_list
show_diffusers_model_list_detail = False
cached_diffusers_model_tupled_list = get_tupled_model_list(load_diffusers_format_model)
def get_diffusers_model_list():
if show_diffusers_model_list_detail:
return cached_diffusers_model_tupled_list
else:
return load_diffusers_format_model
def enable_diffusers_model_detail(is_enable: bool = False, model_name: str = ""):
global show_diffusers_model_list_detail
show_diffusers_model_list_detail = is_enable
new_value = model_name
index = 0
if model_name in set(load_diffusers_format_model):
index = load_diffusers_format_model.index(model_name)
if is_enable:
new_value = cached_diffusers_model_tupled_list[index][1]
else:
new_value = load_diffusers_format_model[index]
return gr.update(value=is_enable), gr.update(value=new_value, choices=get_diffusers_model_list())
def get_t2i_model_info(repo_id: str):
from huggingface_hub import HfApi
api = HfApi()
try:
if " " in repo_id or not api.repo_exists(repo_id): return ""
model = api.model_info(repo_id=repo_id)
except Exception as e:
print(f"Error: Failed to get {repo_id}'s info. ")
return ""
if model.private or model.gated: return ""
tags = model.tags
info = []
url = f"https://huggingface.co/{repo_id}/"
if not 'diffusers' in tags: return ""
if 'diffusers:FluxPipeline' in tags:
info.append("FLUX.1")
elif 'diffusers:StableDiffusionXLPipeline' in tags:
info.append("SDXL")
elif 'diffusers:StableDiffusionPipeline' in tags:
info.append("SD1.5")
if model.card_data and model.card_data.tags:
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
info.append(f"DLs: {model.downloads}")
info.append(f"likes: {model.likes}")
info.append(model.last_modified.strftime("lastmod: %Y-%m-%d"))
md = f"Model Info: {', '.join(info)}, [Model Repo]({url})"
return gr.update(value=md)
def load_model_prompt_dict():
import json
dict = {}
try:
with open('model_dict.json', encoding='utf-8') as f:
dict = json.load(f)
except Exception:
pass
return dict
model_prompt_dict = load_model_prompt_dict()
model_recom_prompt_enabled = True
animagine_ps = to_list("masterpiece, best quality, very aesthetic, absurdres")
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
pony_ps = to_list("score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
pony_nps = to_list("source_pony, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
other_ps = to_list("anime artwork, anime style, studio anime, highly detailed, cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed")
other_nps = to_list("photo, deformed, black and white, realism, disfigured, low contrast, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly")
default_ps = to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres")
default_nps = to_list("score_6, score_5, score_4, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
def insert_model_recom_prompt(prompt: str = "", neg_prompt: str = "", model_name: str = "None"):
if not model_recom_prompt_enabled or not model_name: return prompt, neg_prompt
prompts = to_list(prompt)
neg_prompts = to_list(neg_prompt)
prompts = list_sub(prompts, animagine_ps + pony_ps + other_ps)
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + other_nps)
last_empty_p = [""] if not prompts and type != "None" else []
last_empty_np = [""] if not neg_prompts and type != "None" else []
ps = []
nps = []
if model_name in model_prompt_dict.keys():
ps = to_list(model_prompt_dict[model_name]["prompt"])
nps = to_list(model_prompt_dict[model_name]["negative_prompt"])
else:
ps = default_ps
nps = default_nps
prompts = prompts + ps
neg_prompts = neg_prompts + nps
prompt = ", ".join(list_uniq(prompts) + last_empty_p)
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
return prompt, neg_prompt
def enable_model_recom_prompt(is_enable: bool = True):
global model_recom_prompt_enabled
model_recom_prompt_enabled = is_enable
return is_enable
private_lora_dict = {}
try:
with open('lora_dict.json', encoding='utf-8') as f:
d = json.load(f)
for k, v in d.items():
private_lora_dict[escape_lora_basename(k)] = v
except Exception:
pass
private_lora_model_list = get_private_lora_model_lists()
loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy()
loras_url_to_path_dict = {} # {"URL to download": "local filepath", ...}
civitai_lora_last_results = {} # {"URL to download": {search results}, ...}
all_lora_list = []
def get_all_lora_list():
global all_lora_list
loras = get_lora_model_list()
all_lora_list = loras.copy()
return loras
def get_all_lora_tupled_list():
global loras_dict
models = get_all_lora_list()
if not models: return []
tupled_list = []
for model in models:
#if not model: continue # to avoid GUI-related bug
basename = Path(model).stem
key = to_lora_key(model)
items = None
if key in loras_dict.keys():
items = loras_dict.get(key, None)
else:
items = get_civitai_info(model)
if items != None:
loras_dict[key] = items
name = basename
value = model
if items and items[2] != "":
if items[1] == "Pony":
name = f"{basename} (for {items[1]}🐴, {items[2]})"
else:
name = f"{basename} (for {items[1]}, {items[2]})"
tupled_list.append((name, value))
return tupled_list
def update_lora_dict(path: str):
global loras_dict
key = to_lora_key(path)
if key in loras_dict.keys(): return
items = get_civitai_info(path)
if items == None: return
loras_dict[key] = items
def download_lora(dl_urls: str):
global loras_url_to_path_dict
dl_path = ""
before = get_local_model_list(directory_loras)
urls = []
for url in [url.strip() for url in dl_urls.split(',')]:
local_path = f"{directory_loras}/{url.split('/')[-1]}"
if not Path(local_path).exists():
download_things(directory_loras, url, hf_token, CIVITAI_API_KEY)
urls.append(url)
after = get_local_model_list(directory_loras)
new_files = list_sub(after, before)
i = 0
for file in new_files:
path = Path(file)
if path.exists():
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
path.resolve().rename(new_path.resolve())
loras_url_to_path_dict[urls[i]] = str(new_path)
update_lora_dict(str(new_path))
dl_path = str(new_path)
i += 1
return dl_path
def copy_lora(path: str, new_path: str):
import shutil
if path == new_path: return new_path
cpath = Path(path)
npath = Path(new_path)
if cpath.exists():
try:
shutil.copy(str(cpath.resolve()), str(npath.resolve()))
except Exception:
return None
update_lora_dict(str(npath))
return new_path
else:
return None
def download_my_lora(dl_urls: str, lora1: str, lora2: str, lora3: str, lora4: str, lora5: str):
path = download_lora(dl_urls)
if path:
if not lora1 or lora1 == "None":
lora1 = path
elif not lora2 or lora2 == "None":
lora2 = path
elif not lora3 or lora3 == "None":
lora3 = path
elif not lora4 or lora4 == "None":
lora4 = path
elif not lora5 or lora5 == "None":
lora5 = path
choices = get_all_lora_tupled_list()
return gr.update(value=lora1, choices=choices), gr.update(value=lora2, choices=choices), gr.update(value=lora3, choices=choices),\
gr.update(value=lora4, choices=choices), gr.update(value=lora5, choices=choices)
def set_prompt_loras(prompt, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
import re
lora1 = get_valid_lora_name(lora1)
lora2 = get_valid_lora_name(lora2)
lora3 = get_valid_lora_name(lora3)
lora4 = get_valid_lora_name(lora4)
lora5 = get_valid_lora_name(lora5)
if not "<lora" in prompt: return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
lora1_wt = get_valid_lora_wt(prompt, lora1, lora1_wt)
lora2_wt = get_valid_lora_wt(prompt, lora2, lora2_wt)
lora3_wt = get_valid_lora_wt(prompt, lora3, lora3_wt)
lora4_wt = get_valid_lora_wt(prompt, lora4, lora4_wt)
lora5_wt = get_valid_lora_wt(prompt, lora5, lora5_wt)
on1, label1, tag1, md1 = get_lora_info(lora1)
on2, label2, tag2, md2 = get_lora_info(lora2)
on3, label3, tag3, md3 = get_lora_info(lora3)
on4, label4, tag4, md4 = get_lora_info(lora4)
on5, label5, tag5, md5 = get_lora_info(lora5)
lora_paths = [lora1, lora2, lora3, lora4, lora5]
prompts = prompt.split(",") if prompt else []
for p in prompts:
p = str(p).strip()
if "<lora" in p:
result = re.findall(r'<lora:(.+?):(.+?)>', p)
if not result: continue
key = result[0][0]
wt = result[0][1]
path = to_lora_path(key)
if not key in loras_dict.keys() or not path:
path = get_valid_lora_name(path)
if not path or path == "None": continue
if path in lora_paths:
continue
elif not on1:
lora1 = path
lora_paths = [lora1, lora2, lora3, lora4, lora5]
lora1_wt = safe_float(wt)
on1 = True
elif not on2:
lora2 = path
lora_paths = [lora1, lora2, lora3, lora4, lora5]
lora2_wt = safe_float(wt)
on2 = True
elif not on3:
lora3 = path
lora_paths = [lora1, lora2, lora3, lora4, lora5]
lora3_wt = safe_float(wt)
on3 = True
elif not on4:
lora4 = path
lora_paths = [lora1, lora2, lora3, lora4, lora5]
lora4_wt = safe_float(wt)
on4, label4, tag4, md4 = get_lora_info(lora4)
elif not on5:
lora5 = path
lora_paths = [lora1, lora2, lora3, lora4, lora5]
lora5_wt = safe_float(wt)
on5 = True
return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
def apply_lora_prompt(prompt: str, lora_info: str):
if lora_info == "None": return gr.update(value=prompt)
tags = prompt.split(",") if prompt else []
prompts = normalize_prompt_list(tags)
lora_tag = lora_info.replace("/",",")
lora_tags = lora_tag.split(",") if str(lora_info) != "None" else []
lora_prompts = normalize_prompt_list(lora_tags)
empty = [""]
prompt = ", ".join(list_uniq(prompts + lora_prompts) + empty)
return gr.update(value=prompt)
def update_loras(prompt, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
import re
on1, label1, tag1, md1 = get_lora_info(lora1)
on2, label2, tag2, md2 = get_lora_info(lora2)
on3, label3, tag3, md3 = get_lora_info(lora3)
on4, label4, tag4, md4 = get_lora_info(lora4)
on5, label5, tag5, md5 = get_lora_info(lora5)
lora_paths = [lora1, lora2, lora3, lora4, lora5]
prompts = prompt.split(",") if prompt else []
output_prompts = []
for p in prompts:
p = str(p).strip()
if "<lora" in p:
result = re.findall(r'<lora:(.+?):(.+?)>', p)
if not result: continue
key = result[0][0]
wt = result[0][1]
path = to_lora_path(key)
if not key in loras_dict.keys() or not path: continue
if path in lora_paths:
output_prompts.append(f"<lora:{to_lora_key(path)}:{safe_float(wt):.2f}>")
elif p:
output_prompts.append(p)
lora_prompts = []
if on1: lora_prompts.append(f"<lora:{to_lora_key(lora1)}:{lora1_wt:.2f}>")
if on2: lora_prompts.append(f"<lora:{to_lora_key(lora2)}:{lora2_wt:.2f}>")
if on3: lora_prompts.append(f"<lora:{to_lora_key(lora3)}:{lora3_wt:.2f}>")
if on4: lora_prompts.append(f"<lora:{to_lora_key(lora4)}:{lora4_wt:.2f}>")
if on5: lora_prompts.append(f"<lora:{to_lora_key(lora5)}:{lora5_wt:.2f}>")
output_prompt = ", ".join(list_uniq(output_prompts + lora_prompts + [""]))
choices = get_all_lora_tupled_list()
return gr.update(value=output_prompt), gr.update(value=lora1, choices=choices), gr.update(value=lora1_wt),\
gr.update(value=tag1, label=label1, visible=on1), gr.update(visible=on1), gr.update(value=md1, visible=on1),\
gr.update(value=lora2, choices=choices), gr.update(value=lora2_wt),\
gr.update(value=tag2, label=label2, visible=on2), gr.update(visible=on2), gr.update(value=md2, visible=on2),\
gr.update(value=lora3, choices=choices), gr.update(value=lora3_wt),\
gr.update(value=tag3, label=label3, visible=on3), gr.update(visible=on3), gr.update(value=md3, visible=on3),\
gr.update(value=lora4, choices=choices), gr.update(value=lora4_wt),\
gr.update(value=tag4, label=label4, visible=on4), gr.update(visible=on4), gr.update(value=md4, visible=on4),\
gr.update(value=lora5, choices=choices), gr.update(value=lora5_wt),\
gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5)
def search_civitai_lora(query, base_model):
global civitai_lora_last_results
items = search_lora_on_civitai(query, base_model)
if not items: return gr.update(choices=[("", "")], value="", visible=False),\
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
civitai_lora_last_results = {}
choices = []
for item in items:
base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
value = item['dl_url']
choices.append((name, value))
civitai_lora_last_results[value] = item
if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
result = civitai_lora_last_results.get(choices[0][1], "None")
md = result['md'] if result else ""
return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
gr.update(visible=True), gr.update(visible=True)
def select_civitai_lora(search_result):
if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
result = civitai_lora_last_results.get(search_result, "None")
md = result['md'] if result else ""
return gr.update(value=search_result), gr.update(value=md, visible=True)
def search_civitai_lora_json(query, base_model):
results = {}
items = search_lora_on_civitai(query, base_model)
if not items: return gr.update(value=results)
for item in items:
results[item['dl_url']] = item
return gr.update(value=results)
quality_prompt_list = [
{
"name": "None",
"prompt": "",
"negative_prompt": "lowres",
},
{
"name": "Animagine Common",
"prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres",
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
},
{
"name": "Pony Anime Common",
"prompt": "source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres",
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
},
{
"name": "Pony Common",
"prompt": "source_anime, score_9, score_8_up, score_7_up",
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
},
{
"name": "Animagine Standard v3.0",
"prompt": "masterpiece, best quality",
"negative_prompt": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name",
},
{
"name": "Animagine Standard v3.1",
"prompt": "masterpiece, best quality, very aesthetic, absurdres",
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
},
{
"name": "Animagine Light v3.1",
"prompt": "(masterpiece), best quality, very aesthetic, perfect face",
"negative_prompt": "(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn",
},
{
"name": "Animagine Heavy v3.1",
"prompt": "(masterpiece), (best quality), (ultra-detailed), very aesthetic, illustration, disheveled hair, perfect composition, moist skin, intricate details",
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair, extra digit, fewer digits, cropped, worst quality, low quality, very displeasing",
},
]
style_list = [
{
"name": "None",
"prompt": "",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still, emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Photographic",
"prompt": "cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Anime",
"prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Manga",
"prompt": "manga style, vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
{
"name": "Digital Art",
"prompt": "concept art, digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art, low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art, magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style, cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model, octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
]
preset_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
preset_quality = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in quality_prompt_list}
def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None"):
def to_list(s):
return [x.strip() for x in s.split(",") if not s == ""]
def list_sub(a, b):
return [e for e in a if e not in b]
def list_uniq(l):
return sorted(set(l), key=l.index)
animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres")
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
pony_nps = to_list("source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
prompts = to_list(prompt)
neg_prompts = to_list(neg_prompt)
all_styles_ps = []
all_styles_nps = []
for d in style_list:
all_styles_ps.extend(to_list(str(d.get("prompt", ""))))
all_styles_nps.extend(to_list(str(d.get("negative_prompt", ""))))
all_quality_ps = []
all_quality_nps = []
for d in quality_prompt_list:
all_quality_ps.extend(to_list(str(d.get("prompt", ""))))
all_quality_nps.extend(to_list(str(d.get("negative_prompt", ""))))
quality_ps = to_list(preset_quality[quality_key][0])
quality_nps = to_list(preset_quality[quality_key][1])
styles_ps = to_list(preset_styles[styles_key][0])
styles_nps = to_list(preset_styles[styles_key][1])
prompts = list_sub(prompts, animagine_ps + pony_ps + all_styles_ps + all_quality_ps)
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + all_styles_nps + all_quality_nps)
last_empty_p = [""] if not prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else []
last_empty_np = [""] if not neg_prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else []
if type == "Animagine":
prompts = prompts + animagine_ps
neg_prompts = neg_prompts + animagine_nps
elif type == "Pony":
prompts = prompts + pony_ps
neg_prompts = neg_prompts + pony_nps
prompts = prompts + styles_ps + quality_ps
neg_prompts = neg_prompts + styles_nps + quality_nps
prompt = ", ".join(list_uniq(prompts) + last_empty_p)
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
return gr.update(value=prompt), gr.update(value=neg_prompt)
|