Spaces:
Running
Running
File size: 20,339 Bytes
c5200bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import gradio as gr
from convert_url_to_diffusers_multi_gr import convert_url_to_diffusers_repo, get_dtypes, FLUX_BASE_REPOS, SD35_BASE_REPOS
from presets import (DEFAULT_DTYPE, schedulers, clips, t5s, sdxl_vaes, sdxl_loras, sdxl_preset_dict, sdxl_set_presets,
sd15_vaes, sd15_loras, sd15_preset_dict, sd15_set_presets, flux_vaes, flux_loras, flux_preset_dict, flux_set_presets,
sd35_vaes, sd35_loras, sd35_preset_dict, sd35_set_presets)
import os
HF_USER = os.getenv("HF_USER", "")
HF_REPO = os.getenv("HF_REPO", "")
HF_URL = os.getenv("HF_URL", "")
HF_OW = os.getenv("HF_OW", False)
HF_PR = os.getenv("HF_PR", False)
css = """
.title { font-size: 3em; align-items: center; text-align: center; }
.info { align-items: center; text-align: center; }
.block.result { margin: 1em 0; padding: 1em; box-shadow: 0 0 3px 3px #664422, 0 0 3px 2px #664422 inset; border-radius: 6px; background: #665544; }
"""
with gr.Blocks(theme="theNeofr/Syne", fill_width=True, css=css, delete_cache=(60, 3600)) as demo:
gr.Markdown("# Download SDXL / SD 1.5 / SD 3.5 / FLUX.1 safetensors and convert to HF🤗 Diffusers format and create your repo", elem_classes="title")
gr.Markdown(f"""
### ⚠️IMPORTANT NOTICE⚠️<br>
It's dangerous to expose your access token or key to others.
If you do use it, I recommend that you duplicate this space on your own HF account in advance.
Keys and tokens could be set to **Secrets** (`HF_TOKEN`, `CIVITAI_API_KEY`) if it's placed in your own space.
It saves you the trouble of typing them in.<br>
It barely works in the CPU space, but larger files can be converted if duplicated on the more powerful **Zero GPU** space.
In particular, conversion of FLUX.1 or SD 3.5 is almost impossible in CPU space.
### The steps are the following:
1. Paste a write-access token from [hf.co/settings/tokens](https://huggingface.co/settings/tokens).
1. Input a model download url of the Hugging Face or Civitai or other sites.
1. If you want to download a model from Civitai, paste a Civitai API Key.
1. Input your HF user ID. e.g. 'yourid'.
1. Input your new repo name. If empty, auto-complete. e.g. 'newrepo'.
1. Set the parameters. If not sure, just use the defaults.
1. Click "Submit".
1. Patiently wait until the output changes. It takes approximately 2 to 3 minutes (on SDXL models downloading from HF).
""")
with gr.Column():
dl_url = gr.Textbox(label="URL to download", placeholder="https://huggingface.co/bluepen5805/blue_pencil-XL/blob/main/blue_pencil-XL-v7.0.0.safetensors",
value=HF_URL, max_lines=1)
with gr.Group():
with gr.Row():
hf_user = gr.Textbox(label="Your HF user ID", placeholder="username", value=HF_USER, max_lines=1)
hf_repo = gr.Textbox(label="New repo name", placeholder="reponame", info="If empty, auto-complete", value=HF_REPO, max_lines=1)
with gr.Row(equal_height=True):
with gr.Column():
hf_token = gr.Textbox(label="Your HF write token", placeholder="hf_...", value="", max_lines=1)
gr.Markdown("Your token is available at [hf.co/settings/tokens](https://huggingface.co/settings/tokens).", elem_classes="info")
with gr.Column():
civitai_key = gr.Textbox(label="Your Civitai API Key (Optional)", info="If you download model from Civitai...", placeholder="", value="", max_lines=1)
gr.Markdown("Your Civitai API key is available at [https://civitai.com/user/account](https://civitai.com/user/account).", elem_classes="info")
with gr.Row():
is_upload_sf = gr.Checkbox(label="Upload single safetensors file into new repo", value=False)
is_private = gr.Checkbox(label="Create private repo", value=True)
with gr.Row():
is_overwrite = gr.Checkbox(label="Overwrite repo", value=HF_OW)
is_pr = gr.Checkbox(label="Create PR", value=HF_PR)
with gr.Tab("SDXL"):
with gr.Group():
sdxl_presets = gr.Radio(label="Presets", choices=list(sdxl_preset_dict.keys()), value=list(sdxl_preset_dict.keys())[0])
sdxl_mtype = gr.Textbox(value="SDXL", visible=False)
with gr.Row():
sdxl_dtype = gr.Radio(label="Output data type", choices=get_dtypes(), value=DEFAULT_DTYPE)
with gr.Accordion("Advanced settings", open=False):
with gr.Row():
sdxl_vae = gr.Dropdown(label="VAE", choices=sdxl_vaes, value="", allow_custom_value=True)
sdxl_clip = gr.Dropdown(label="CLIP", choices=clips, value="", allow_custom_value=True)
sdxl_scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=schedulers, value="Euler a")
with gr.Row():
with gr.Column():
with gr.Row():
sdxl_lora1 = gr.Dropdown(label="LoRA1", choices=sdxl_loras, value="", allow_custom_value=True, min_width=320)
sdxl_lora1s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA1 weight scale")
with gr.Column():
with gr.Row():
sdxl_lora2 = gr.Dropdown(label="LoRA2", choices=sdxl_loras, value="", allow_custom_value=True, min_width=320)
sdxl_lora2s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA2 weight scale")
with gr.Column():
with gr.Row():
sdxl_lora3 = gr.Dropdown(label="LoRA3", choices=sdxl_loras, value="", allow_custom_value=True, min_width=320)
sdxl_lora3s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA3 weight scale")
with gr.Column():
with gr.Row():
sdxl_lora4 = gr.Dropdown(label="LoRA4", choices=sdxl_loras, value="", allow_custom_value=True, min_width=320)
sdxl_lora4s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA4 weight scale")
with gr.Column():
with gr.Row():
sdxl_lora5 = gr.Dropdown(label="LoRA5", choices=sdxl_loras, value="", allow_custom_value=True, min_width=320)
sdxl_lora5s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA5 weight scale")
sdxl_run_button = gr.Button(value="Submit", variant="primary")
with gr.Tab("SD 1.5"):
with gr.Group():
with gr.Row():
sd15_presets = gr.Radio(label="Presets", choices=list(sd15_preset_dict.keys()), value=list(sd15_preset_dict.keys())[0])
with gr.Row():
sd15_mtype = gr.Textbox(value="SD 1.5", visible=False)
with gr.Row():
sd15_dtype = gr.Radio(label="Output data type", choices=get_dtypes(), value=DEFAULT_DTYPE)
with gr.Row():
sd15_ema = gr.Checkbox(label="Extract EMA", value=True, visible=True)
with gr.Row():
sd15_isize = gr.Radio(label="Image size", choices=["768", "512"], value="768")
with gr.Row():
sd15_sc = gr.Checkbox(label="Safety checker", value=False)
with gr.Accordion("Advanced settings", open=False):
with gr.Row():
sd15_vae = gr.Dropdown(label="VAE", choices=sd15_vaes, value="", allow_custom_value=True)
with gr.Row():
sd15_clip = gr.Dropdown(label="CLIP", choices=clips, value="", allow_custom_value=True)
with gr.Row():
sd15_scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=schedulers, value="Euler")
with gr.Row():
with gr.Column():
with gr.Row():
sd15_lora1 = gr.Dropdown(label="LoRA1", choices=sd15_loras, value="", allow_custom_value=True, min_width=320)
with gr.Row():
sd15_lora1s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA1 weight scale")
with gr.Row():
with gr.Column():
sd15_lora2 = gr.Dropdown(label="LoRA2", choices=sd15_loras, value="", allow_custom_value=True, min_width=320)
with gr.Row():
sd15_lora2s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA2 weight scale")
with gr.Column():
with gr.Row():
sd15_lora3 = gr.Dropdown(label="LoRA3", choices=sd15_loras, value="", allow_custom_value=True, min_width=320)
with gr.Row():
sd15_lora3s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA3 weight scale")
with gr.Column():
with gr.Row():
sd15_lora4 = gr.Dropdown(label="LoRA4", choices=sd15_loras, value="", allow_custom_value=True, min_width=320)
with gr.Row():
sd15_lora4s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA4 weight scale")
with gr.Column():
with gr.Row():
sd15_lora5 = gr.Dropdown(label="LoRA5", choices=sd15_loras, value="", allow_custom_value=True, min_width=320)
with gr.Row():
sd15_lora5s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA5 weight scale")
sd15_run_button = gr.Button(value="Submit", variant="primary")
with gr.Tab("FLUX.1"):
with gr.Group():
flux_presets = gr.Radio(label="Presets", choices=list(flux_preset_dict.keys()), value=list(flux_preset_dict.keys())[0])
flux_mtype = gr.Textbox(value="FLUX", visible=False)
with gr.Row():
flux_dtype = gr.Radio(label="Output data type", choices=get_dtypes(), value="bf16")
flux_base_repo = gr.Dropdown(label="Base repo ID", choices=FLUX_BASE_REPOS, value=FLUX_BASE_REPOS[0], allow_custom_value=True, visible=True)
with gr.Accordion("Advanced settings", open=False):
with gr.Row():
flux_vae = gr.Dropdown(label="VAE", choices=flux_vaes, value="", allow_custom_value=True)
with gr.Row():
flux_clip = gr.Dropdown(label="CLIP", choices=clips, value="", allow_custom_value=True)
with gr.Row():
flux_t5 = gr.Dropdown(label="T5", choices=t5s, value="", allow_custom_value=True)
flux_scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=[""], value="", visible=False)
with gr.Row():
with gr.Column():
flux_lora1 = gr.Dropdown(label="LoRA1", choices=flux_loras, value="", allow_custom_value=True, min_width=320)
flux_lora1s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA1 weight scale")
with gr.Column():
flux_lora2 = gr.Dropdown(label="LoRA2", choices=flux_loras, value="", allow_custom_value=True, min_width=320)
flux_lora2s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA2 weight scale")
with gr.Column():
flux_lora3 = gr.Dropdown(label="LoRA3", choices=flux_loras, value="", allow_custom_value=True, min_width=320)
flux_lora3s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA3 weight scale")
with gr.Column():
flux_lora4 = gr.Dropdown(label="LoRA4", choices=flux_loras, value="", allow_custom_value=True, min_width=320)
flux_lora4s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA4 weight scale")
with gr.Column():
flux_lora5 = gr.Dropdown(label="LoRA5", choices=flux_loras, value="", allow_custom_value=True, min_width=320)
flux_lora5s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA5 weight scale")
flux_run_button = gr.Button(value="Submit", variant="primary")
with gr.Tab("SD 3.5"):
with gr.Group():
with gr.Row():
sd35_presets = gr.Radio(label="Presets", choices=list(sd35_preset_dict.keys()), value=list(sd35_preset_dict.keys())[0])
with gr.Row():
sd35_mtype = gr.Textbox(value="SD 3.5", visible=False)
with gr.Row():
sd35_dtype = gr.Radio(label="Output data type", choices=get_dtypes(), value="bf16")
sd35_base_repo = gr.Dropdown(label="Base repo ID", choices=SD35_BASE_REPOS, value=SD35_BASE_REPOS[0], allow_custom_value=True, visible=True)
with gr.Accordion("Advanced settings", open=False):
with gr.Row():
sd35_vae = gr.Dropdown(label="VAE", choices=sd35_vaes, value="", allow_custom_value=True)
sd35_clip = gr.Dropdown(label="CLIP", choices=clips, value="", allow_custom_value=True)
sd35_t5 = gr.Dropdown(label="T5", choices=t5s, value="", allow_custom_value=True)
sd35_scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=[""], value="", visible=False)
with gr.Row():
with gr.Column():
with gr.Row():
sd35_lora1 = gr.Dropdown(label="LoRA1", choices=sd35_loras, value="", allow_custom_value=True, min_width=320)
sd35_lora1s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA1 weight scale")
with gr.Column():
with gr.Row():
sd35_lora2 = gr.Dropdown(label="LoRA2", choices=sd35_loras, value="", allow_custom_value=True, min_width=320)
sd35_lora2s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA2 weight scale")
with gr.Column():
with gr.Row():
sd35_lora3 = gr.Dropdown(label="LoRA3", choices=sd35_loras, value="", allow_custom_value=True, min_width=320)
sd35_lora3s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA3 weight scale")
with gr.Column():
with gr.Row():
sd35_lora4 = gr.Dropdown(label="LoRA4", choices=sd35_loras, value="", allow_custom_value=True, min_width=320)
sd35_lora4s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA4 weight scale")
with gr.Column():
with gr.Row():
sd35_lora5 = gr.Dropdown(label="LoRA5", choices=sd35_loras, value="", allow_custom_value=True, min_width=320)
sd35_lora5s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA5 weight scale")
sd35_run_button = gr.Button(value="Submit", variant="primary")
adv_args = gr.Textbox(label="Advanced arguments", value="", visible=False)
with gr.Group():
with gr.Row():
repo_urls = gr.CheckboxGroup(visible=False, choices=[], value=[])
output_md = gr.Markdown(label="Output", value="<br><br>", elem_classes="result")
clear_button = gr.Button(value="Clear Output", variant="secondary")
gr.DuplicateButton(value="Duplicate Space")
gr.Markdown("This webui was redesigned with ❤ by [theNeofr](https://huggingface.co/theNeofr)")
gr.on(
triggers=[sdxl_run_button.click],
fn=convert_url_to_diffusers_repo,
inputs=[dl_url, hf_user, hf_repo, hf_token, civitai_key, is_private, is_overwrite, is_pr, is_upload_sf, repo_urls,
sdxl_dtype, sdxl_vae, sdxl_clip, flux_t5, sdxl_scheduler, sd15_ema, sd15_isize, sd15_sc, flux_base_repo, sdxl_mtype,
sdxl_lora1, sdxl_lora1s, sdxl_lora2, sdxl_lora2s, sdxl_lora3, sdxl_lora3s, sdxl_lora4, sdxl_lora4s, sdxl_lora5, sdxl_lora5s, adv_args],
outputs=[repo_urls, output_md],
)
sdxl_presets.change(
fn=sdxl_set_presets,
inputs=[sdxl_presets],
outputs=[sdxl_dtype, sdxl_vae, sdxl_scheduler, sdxl_lora1, sdxl_lora1s, sdxl_lora2, sdxl_lora2s, sdxl_lora3, sdxl_lora3s,
sdxl_lora4, sdxl_lora4s, sdxl_lora5, sdxl_lora5s],
queue=False,
)
gr.on(
triggers=[sd15_run_button.click],
fn=convert_url_to_diffusers_repo,
inputs=[dl_url, hf_user, hf_repo, hf_token, civitai_key, is_private, is_overwrite, is_pr, is_upload_sf, repo_urls,
sd15_dtype, sd15_vae, sd15_clip, flux_t5, sd15_scheduler, sd15_ema, sd15_isize, sd15_sc, flux_base_repo, sd15_mtype,
sd15_lora1, sd15_lora1s, sd15_lora2, sd15_lora2s, sd15_lora3, sd15_lora3s, sd15_lora4, sd15_lora4s, sd15_lora5, sd15_lora5s, adv_args],
outputs=[repo_urls, output_md],
)
sd15_presets.change(
fn=sd15_set_presets,
inputs=[sd15_presets],
outputs=[sd15_dtype, sd15_vae, sd15_scheduler, sd15_lora1, sd15_lora1s, sd15_lora2, sd15_lora2s, sd15_lora3, sd15_lora3s,
sd15_lora4, sd15_lora4s, sd15_lora5, sd15_lora5s, sd15_ema],
queue=False,
)
gr.on(
triggers=[flux_run_button.click],
fn=convert_url_to_diffusers_repo,
inputs=[dl_url, hf_user, hf_repo, hf_token, civitai_key, is_private, is_overwrite, is_pr, is_upload_sf, repo_urls,
flux_dtype, flux_vae, flux_clip, flux_t5, flux_scheduler, sd15_ema, sd15_isize, sd15_sc, flux_base_repo, flux_mtype,
flux_lora1, flux_lora1s, flux_lora2, flux_lora2s, flux_lora3, flux_lora3s, flux_lora4, flux_lora4s, flux_lora5, flux_lora5s, adv_args],
outputs=[repo_urls, output_md],
)
flux_presets.change(
fn=flux_set_presets,
inputs=[flux_presets],
outputs=[flux_dtype, flux_vae, flux_scheduler, flux_lora1, flux_lora1s, flux_lora2, flux_lora2s, flux_lora3, flux_lora3s,
flux_lora4, flux_lora4s, flux_lora5, flux_lora5s, flux_base_repo],
queue=False,
)
gr.on(
triggers=[sd35_run_button.click],
fn=convert_url_to_diffusers_repo,
inputs=[dl_url, hf_user, hf_repo, hf_token, civitai_key, is_private, is_overwrite, is_pr, is_upload_sf, repo_urls,
sd35_dtype, sd35_vae, sd35_clip, sd35_t5, sd35_scheduler, sd15_ema, sd15_isize, sd15_sc, sd35_base_repo, sd35_mtype,
sd35_lora1, sd35_lora1s, sd35_lora2, sd35_lora2s, sd35_lora3, sd35_lora3s, sd35_lora4, sd35_lora4s, sd35_lora5, sd35_lora5s, adv_args],
outputs=[repo_urls, output_md],
)
sd35_presets.change(
fn=sd35_set_presets,
inputs=[sd35_presets],
outputs=[sd35_dtype, sd35_vae, sd35_scheduler, sd35_lora1, sd35_lora1s, sd35_lora2, sd35_lora2s, sd35_lora3, sd35_lora3s,
sd35_lora4, sd35_lora4s, sd35_lora5, sd35_lora5s, sd35_base_repo],
queue=False,
)
clear_button.click(lambda: ([], "<br><br>"), None, [repo_urls, output_md], queue=False, show_api=False)
demo.queue()
demo.launch()
|