File size: 19,068 Bytes
eab05e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225af71
eab05e2
 
 
 
225af71
 
 
 
eab05e2
225af71
 
eab05e2
225af71
 
eab05e2
225af71
 
eab05e2
225af71
 
eab05e2
 
 
 
225af71
 
 
eab05e2
 
 
 
 
 
 
 
225af71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eab05e2
 
 
 
 
225af71
eab05e2
 
 
 
225af71
eab05e2
 
 
225af71
 
 
eab05e2
225af71
 
eab05e2
225af71
 
eab05e2
225af71
 
eab05e2
225af71
 
eab05e2
 
 
 
225af71
 
 
eab05e2
 
 
 
 
 
225af71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eab05e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225af71
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import gradio as gr
from convert_url_to_diffusers_multi_gr import convert_url_to_diffusers_repo, get_dtypes, FLUX_BASE_REPOS, SD35_BASE_REPOS
from presets import (DEFAULT_DTYPE, schedulers, clips, t5s, sdxl_vaes, sdxl_loras, sdxl_preset_dict, sdxl_set_presets,
                     sd15_vaes, sd15_loras, sd15_preset_dict, sd15_set_presets, flux_vaes, flux_loras, flux_preset_dict, flux_set_presets,
                     sd35_vaes, sd35_loras, sd35_preset_dict, sd35_set_presets)
import os


HF_USER = os.getenv("HF_USER", "")
HF_REPO = os.getenv("HF_REPO", "")
HF_URL = os.getenv("HF_URL", "")
HF_OW = os.getenv("HF_OW", False)
HF_PR = os.getenv("HF_PR", False)

css = """
.title { font-size: 3em; align-items: center; text-align: center; }
.info { align-items: center; text-align: center; }
.block.result { margin: 1em 0; padding: 1em; box-shadow: 0 0 3px 3px #664422, 0 0 3px 2px #664422 inset; border-radius: 6px; background: #665544; }
"""

with gr.Blocks(theme="theNeofr/Syne", fill_width=True, css=css, delete_cache=(60, 3600)) as demo:
    gr.Markdown("# Download SDXL / SD 1.5 / SD 3.5 / FLUX.1 safetensors and convert to HF🤗 Diffusers format and create your repo", elem_classes="title")
    gr.Markdown(f"""
### ⚠️IMPORTANT NOTICE⚠️<br>
It's dangerous to expose your access token or key to others.
If you do use it, I recommend that you duplicate this space on your own HF account in advance.
Keys and tokens could be set to **Secrets** (`HF_TOKEN`, `CIVITAI_API_KEY`) if it's placed in your own space.
It saves you the trouble of typing them in.<br>
It barely works in the CPU space, but larger files can be converted if duplicated on the more powerful **Zero GPU** space.
In particular, conversion of FLUX.1 or SD 3.5 is almost impossible in CPU space.
### The steps are the following:
1. Paste a write-access token from [hf.co/settings/tokens](https://huggingface.co/settings/tokens).
1. Input a model download url of the Hugging Face or Civitai or other sites.
1. If you want to download a model from Civitai, paste a Civitai API Key.
1. Input your HF user ID. e.g. 'yourid'.
1. Input your new repo name. If empty, auto-complete. e.g. 'newrepo'.
1. Set the parameters. If not sure, just use the defaults.
1. Click "Submit".
1. Patiently wait until the output changes. It takes approximately 2 to 3 minutes (on SDXL models downloading from HF).
            """)
    with gr.Column():
        dl_url = gr.Textbox(label="URL to download", placeholder="https://huggingface.co/bluepen5805/blue_pencil-XL/blob/main/blue_pencil-XL-v7.0.0.safetensors",
                            value=HF_URL, max_lines=1)
        with gr.Group():
            with gr.Row():
                hf_user = gr.Textbox(label="Your HF user ID", placeholder="username", value=HF_USER, max_lines=1)
                hf_repo = gr.Textbox(label="New repo name", placeholder="reponame", info="If empty, auto-complete", value=HF_REPO, max_lines=1)
            with gr.Row(equal_height=True):
                with gr.Column():
                    hf_token = gr.Textbox(label="Your HF write token", placeholder="hf_...", value="", max_lines=1)
                    gr.Markdown("Your token is available at [hf.co/settings/tokens](https://huggingface.co/settings/tokens).", elem_classes="info")
                with gr.Column():
                    civitai_key = gr.Textbox(label="Your Civitai API Key (Optional)", info="If you download model from Civitai...", placeholder="", value="", max_lines=1)
                    gr.Markdown("Your Civitai API key is available at [https://civitai.com/user/account](https://civitai.com/user/account).", elem_classes="info")
            with gr.Row():
                is_upload_sf = gr.Checkbox(label="Upload single safetensors file into new repo", value=False)
                is_private = gr.Checkbox(label="Create private repo", value=True)
            with gr.Row():
                is_overwrite = gr.Checkbox(label="Overwrite repo", value=HF_OW)
                is_pr = gr.Checkbox(label="Create PR", value=HF_PR)
        with gr.Tab("SDXL"):
            with gr.Group():
                sdxl_presets = gr.Radio(label="Presets", choices=list(sdxl_preset_dict.keys()), value=list(sdxl_preset_dict.keys())[0])
                sdxl_mtype = gr.Textbox(value="SDXL", visible=False)
                sdxl_dtype = gr.Radio(label="Output data type", choices=get_dtypes(), value=DEFAULT_DTYPE)
                with gr.Accordion("Advanced settings", open=False):
                    with gr.Row():
                        sdxl_vae = gr.Dropdown(label="VAE", choices=sdxl_vaes, value="", allow_custom_value=True)
                        sdxl_scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=schedulers, value="Euler a")
                        sdxl_clip = gr.Dropdown(label="CLIP", choices=clips, value="", allow_custom_value=True)
                    with gr.Column():
                        with gr.Row():
                            sdxl_lora1 = gr.Dropdown(label="LoRA1", choices=sdxl_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            sdxl_lora1s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA1 weight scale")
                        with gr.Row():
                            sdxl_lora2 = gr.Dropdown(label="LoRA2", choices=sdxl_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            sdxl_lora2s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA2 weight scale")
                        with gr.Row():
                            sdxl_lora3 = gr.Dropdown(label="LoRA3", choices=sdxl_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            sdxl_lora3s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA3 weight scale")
                        with gr.Row():
                            sdxl_lora4 = gr.Dropdown(label="LoRA4", choices=sdxl_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            sdxl_lora4s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA4 weight scale")
                        with gr.Row():
                            sdxl_lora5 = gr.Dropdown(label="LoRA5", choices=sdxl_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            sdxl_lora5s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA5 weight scale")
            sdxl_run_button = gr.Button(value="Submit", variant="primary")
        with gr.Tab("SD 1.5"):
            with gr.Group():
                sd15_presets = gr.Radio(label="Presets", choices=list(sd15_preset_dict.keys()), value=list(sd15_preset_dict.keys())[0])
                sd15_mtype = gr.Textbox(value="SD 1.5", visible=False)
                sd15_dtype = gr.Radio(label="Output data type", choices=get_dtypes(), value=DEFAULT_DTYPE)
                with gr.Row():
                    sd15_ema = gr.Checkbox(label="Extract EMA", value=True, visible=True)
                    sd15_isize = gr.Radio(label="Image size", choices=["768", "512"], value="768")
                    sd15_sc = gr.Checkbox(label="Safety checker", value=False)
                with gr.Accordion("Advanced settings", open=False):
                    with gr.Row():
                        sd15_vae = gr.Dropdown(label="VAE", choices=sd15_vaes, value="", allow_custom_value=True)
                        sd15_scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=schedulers, value="Euler")
                        sd15_clip = gr.Dropdown(label="CLIP", choices=clips, value="", allow_custom_value=True)
                    with gr.Column():
                        with gr.Row():
                            sd15_lora1 = gr.Dropdown(label="LoRA1", choices=sd15_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            sd15_lora1s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA1 weight scale")
                        with gr.Row():
                            sd15_lora2 = gr.Dropdown(label="LoRA2", choices=sd15_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            sd15_lora2s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA2 weight scale")
                        with gr.Row():
                            sd15_lora3 = gr.Dropdown(label="LoRA3", choices=sd15_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            sd15_lora3s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA3 weight scale")
                        with gr.Row():
                            sd15_lora4 = gr.Dropdown(label="LoRA4", choices=sd15_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            sd15_lora4s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA4 weight scale")
                        with gr.Row():
                            sd15_lora5 = gr.Dropdown(label="LoRA5", choices=sd15_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            sd15_lora5s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA5 weight scale")
            sd15_run_button = gr.Button(value="Submit", variant="primary")
        with gr.Tab("FLUX.1"):
            with gr.Group():
                flux_presets = gr.Radio(label="Presets", choices=list(flux_preset_dict.keys()), value=list(flux_preset_dict.keys())[0])
                flux_mtype = gr.Textbox(value="FLUX", visible=False)
                flux_dtype = gr.Radio(label="Output data type", choices=get_dtypes(), value="bf16")
                flux_base_repo = gr.Dropdown(label="Base repo ID", choices=FLUX_BASE_REPOS, value=FLUX_BASE_REPOS[0], allow_custom_value=True, visible=True)
                with gr.Accordion("Advanced settings", open=False):
                    with gr.Row():
                        flux_vae = gr.Dropdown(label="VAE", choices=flux_vaes, value="", allow_custom_value=True)
                        flux_scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=[""], value="", visible=False)
                    with gr.Row():
                        flux_clip = gr.Dropdown(label="CLIP", choices=clips, value="", allow_custom_value=True)
                        flux_t5 = gr.Dropdown(label="T5", choices=t5s, value="", allow_custom_value=True)
                    with gr.Column():
                        with gr.Row():
                            flux_lora1 = gr.Dropdown(label="LoRA1", choices=flux_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            flux_lora1s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA1 weight scale")
                        with gr.Row():
                            flux_lora2 = gr.Dropdown(label="LoRA2", choices=flux_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            flux_lora2s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA2 weight scale")
                        with gr.Row():
                            flux_lora3 = gr.Dropdown(label="LoRA3", choices=flux_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            flux_lora3s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA3 weight scale")
                        with gr.Row():
                            flux_lora4 = gr.Dropdown(label="LoRA4", choices=flux_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            flux_lora4s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA4 weight scale")
                        with gr.Row():
                            flux_lora5 = gr.Dropdown(label="LoRA5", choices=flux_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            flux_lora5s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA5 weight scale")
            flux_run_button = gr.Button(value="Submit", variant="primary")
        with gr.Tab("SD 3.5"):
            with gr.Group():
                sd35_presets = gr.Radio(label="Presets", choices=list(sd35_preset_dict.keys()), value=list(sd35_preset_dict.keys())[0])
                sd35_mtype = gr.Textbox(value="SD 3.5", visible=False)
                sd35_dtype = gr.Radio(label="Output data type", choices=get_dtypes(), value="bf16")
                sd35_base_repo = gr.Dropdown(label="Base repo ID", choices=SD35_BASE_REPOS, value=SD35_BASE_REPOS[0], allow_custom_value=True, visible=True)
                with gr.Accordion("Advanced settings", open=False):
                    with gr.Row():
                        sd35_vae = gr.Dropdown(label="VAE", choices=sd35_vaes, value="", allow_custom_value=True)
                        sd35_scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=[""], value="", visible=False)
                    with gr.Row():
                        sd35_clip = gr.Dropdown(label="CLIP", choices=clips, value="", allow_custom_value=True)
                        sd35_t5 = gr.Dropdown(label="T5", choices=t5s, value="", allow_custom_value=True)
                    with gr.Column():
                        with gr.Row():
                            sd35_lora1 = gr.Dropdown(label="LoRA1", choices=sd35_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            sd35_lora1s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA1 weight scale")
                        with gr.Row():
                            sd35_lora2 = gr.Dropdown(label="LoRA2", choices=sd35_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            sd35_lora2s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA2 weight scale")
                        with gr.Row():
                            sd35_lora3 = gr.Dropdown(label="LoRA3", choices=sd35_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            sd35_lora3s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA3 weight scale")
                        with gr.Row():
                            sd35_lora4 = gr.Dropdown(label="LoRA4", choices=sd35_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            sd35_lora4s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA4 weight scale")
                        with gr.Row():
                            sd35_lora5 = gr.Dropdown(label="LoRA5", choices=sd35_loras, value="", allow_custom_value=True, min_width=320, scale=2)
                            sd35_lora5s = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="LoRA5 weight scale")
            sd35_run_button = gr.Button(value="Submit", variant="primary")
        adv_args = gr.Textbox(label="Advanced arguments", value="", visible=False)
        with gr.Group():
            with gr.Row():
                repo_urls = gr.CheckboxGroup(visible=False, choices=[], value=[])
            output_md = gr.Markdown(label="Output", value="<br><br>", elem_classes="result")
            clear_button = gr.Button(value="Clear Output", variant="secondary")
        gr.DuplicateButton(value="Duplicate Space")

    gr.Markdown("This webui was redesigned with ❤ by [theNeofr](https://huggingface.co/theNeofr)")
    gr.on(
        triggers=[sdxl_run_button.click],
        fn=convert_url_to_diffusers_repo,
        inputs=[dl_url, hf_user, hf_repo, hf_token, civitai_key, is_private, is_overwrite, is_pr, is_upload_sf, repo_urls,
                sdxl_dtype, sdxl_vae, sdxl_clip, flux_t5, sdxl_scheduler, sd15_ema, sd15_isize, sd15_sc, flux_base_repo, sdxl_mtype,
                sdxl_lora1, sdxl_lora1s, sdxl_lora2, sdxl_lora2s, sdxl_lora3, sdxl_lora3s, sdxl_lora4, sdxl_lora4s, sdxl_lora5, sdxl_lora5s, adv_args],
        outputs=[repo_urls, output_md],
    )
    sdxl_presets.change(
        fn=sdxl_set_presets,
        inputs=[sdxl_presets],
        outputs=[sdxl_dtype, sdxl_vae, sdxl_scheduler, sdxl_lora1, sdxl_lora1s, sdxl_lora2, sdxl_lora2s, sdxl_lora3, sdxl_lora3s,
                 sdxl_lora4, sdxl_lora4s, sdxl_lora5, sdxl_lora5s],
        queue=False,
    )
    gr.on(
        triggers=[sd15_run_button.click],
        fn=convert_url_to_diffusers_repo,
        inputs=[dl_url, hf_user, hf_repo, hf_token, civitai_key, is_private, is_overwrite, is_pr, is_upload_sf, repo_urls,
                sd15_dtype, sd15_vae, sd15_clip, flux_t5, sd15_scheduler, sd15_ema, sd15_isize, sd15_sc, flux_base_repo, sd15_mtype,
                sd15_lora1, sd15_lora1s, sd15_lora2, sd15_lora2s, sd15_lora3, sd15_lora3s, sd15_lora4, sd15_lora4s, sd15_lora5, sd15_lora5s, adv_args],
        outputs=[repo_urls, output_md],
    )
    sd15_presets.change(
        fn=sd15_set_presets,
        inputs=[sd15_presets],
        outputs=[sd15_dtype, sd15_vae, sd15_scheduler, sd15_lora1, sd15_lora1s, sd15_lora2, sd15_lora2s, sd15_lora3, sd15_lora3s,
                 sd15_lora4, sd15_lora4s, sd15_lora5, sd15_lora5s, sd15_ema],
        queue=False,
    )
    gr.on(
        triggers=[flux_run_button.click],
        fn=convert_url_to_diffusers_repo,
        inputs=[dl_url, hf_user, hf_repo, hf_token, civitai_key, is_private, is_overwrite, is_pr, is_upload_sf, repo_urls,
                flux_dtype, flux_vae, flux_clip, flux_t5, flux_scheduler, sd15_ema, sd15_isize, sd15_sc, flux_base_repo, flux_mtype,
                flux_lora1, flux_lora1s, flux_lora2, flux_lora2s, flux_lora3, flux_lora3s, flux_lora4, flux_lora4s, flux_lora5, flux_lora5s, adv_args],
        outputs=[repo_urls, output_md],
    )
    flux_presets.change(
        fn=flux_set_presets,
        inputs=[flux_presets],
        outputs=[flux_dtype, flux_vae, flux_scheduler, flux_lora1, flux_lora1s, flux_lora2, flux_lora2s, flux_lora3, flux_lora3s,
                 flux_lora4, flux_lora4s, flux_lora5, flux_lora5s, flux_base_repo],
        queue=False,
    )
    gr.on(
        triggers=[sd35_run_button.click],
        fn=convert_url_to_diffusers_repo,
        inputs=[dl_url, hf_user, hf_repo, hf_token, civitai_key, is_private, is_overwrite, is_pr, is_upload_sf, repo_urls,
                sd35_dtype, sd35_vae, sd35_clip, sd35_t5, sd35_scheduler, sd15_ema, sd15_isize, sd15_sc, sd35_base_repo, sd35_mtype,
                sd35_lora1, sd35_lora1s, sd35_lora2, sd35_lora2s, sd35_lora3, sd35_lora3s, sd35_lora4, sd35_lora4s, sd35_lora5, sd35_lora5s, adv_args],
        outputs=[repo_urls, output_md],
    )
    sd35_presets.change(
        fn=sd35_set_presets,
        inputs=[sd35_presets],
        outputs=[sd35_dtype, sd35_vae, sd35_scheduler, sd35_lora1, sd35_lora1s, sd35_lora2, sd35_lora2s, sd35_lora3, sd35_lora3s,
                 sd35_lora4, sd35_lora4s, sd35_lora5, sd35_lora5s, sd35_base_repo],
        queue=False,
    )
    clear_button.click(lambda: ([], "<br><br>"), None, [repo_urls, output_md], queue=False, show_api=False)

demo.queue()
demo.launch(ssr_mode=False)