qwen2vl-flux-zero / model.py
John6666's picture
Upload 46 files
0eea822 verified
import torch
from torch import nn
from PIL import Image
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from flux.transformer_flux import FluxTransformer2DModel
from flux.pipeline_flux_chameleon import FluxPipeline
from flux.pipeline_flux_img2img import FluxImg2ImgPipeline
from flux.pipeline_flux_inpaint import FluxInpaintPipeline
from flux.pipeline_flux_controlnet import FluxControlNetPipeline, FluxControlNetModel
from flux.pipeline_flux_controlnet_img2img import FluxControlNetImg2ImgPipeline
from flux.controlnet_flux import FluxMultiControlNetModel
from flux.pipeline_flux_controlnet_inpainting import FluxControlNetInpaintPipeline
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
import os
import cv2
import numpy as np
import math
def get_model_path(model_name):
"""Get the full path for a model based on the checkpoints directory."""
base_dir = os.getenv('CHECKPOINT_DIR', 'checkpoints') # Allow environment variable override
return os.path.join(base_dir, model_name)
# Model paths configuration
MODEL_PATHS = {
'flux': get_model_path('flux'),
'qwen2vl': get_model_path('qwen2-vl'),
'controlnet': get_model_path('controlnet'),
'depth_anything': {
'path': get_model_path('depth-anything-v2'),
'weights': 'depth_anything_v2_vitl.pth'
},
'anyline': {
'path': get_model_path('anyline'),
'weights': 'MTEED.pth'
},
'sam2': {
'path': get_model_path('segment-anything-2'),
'weights': 'sam2_hiera_large.pt',
'config': 'sam2_hiera_l.yaml'
}
}
ASPECT_RATIOS = {
"1:1": (1024, 1024),
"16:9": (1344, 768),
"9:16": (768, 1344),
"2.4:1": (1536, 640),
"3:4": (896, 1152),
"4:3": (1152, 896),
}
class Qwen2Connector(nn.Module):
def __init__(self, input_dim=3584, output_dim=4096):
super().__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.linear(x)
class FluxModel:
def __init__(self, is_turbo=False, device="cuda", required_features=None):
"""
Initialize FluxModel with specified features
Args:
is_turbo: Enable turbo mode for faster inference
device: Device to run the model on
required_features: List of required features ['controlnet', 'depth', 'line', 'sam']
"""
self.device = torch.device(device)
self.dtype = torch.bfloat16
if required_features is None:
required_features = []
self._line_detector_imported = False
self._depth_model_imported = False
self._sam_imported = False
self._turbo_imported = False
# Initialize base models (always required)
self._init_base_models()
# Initialize optional models based on requirements
if 'controlnet' in required_features or any(f in required_features for f in ['depth', 'line']):
self._init_controlnet()
if 'depth' in required_features:
self._init_depth_model()
if 'line' in required_features:
self._init_line_detector()
if 'sam' in required_features:
self._init_sam()
if is_turbo:
self._enable_turbo()
def _init_base_models(self):
"""Initialize the core models that are always needed"""
# Qwen2VL and connector initialization
self.qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(
MODEL_PATHS['qwen2vl'],
torch_dtype=self.dtype
)
self.qwen2vl.requires_grad_(False).to(self.device)
self.connector = Qwen2Connector(input_dim=3584, output_dim=4096)
connector_path = os.path.join(MODEL_PATHS['qwen2vl'], "connector.pt")
if os.path.exists(connector_path):
connector_state_dict = torch.load(connector_path, map_location=self.device, weights_only=True)
connector_state_dict = {k.replace('module.', ''): v for k, v in connector_state_dict.items()}
self.connector.load_state_dict(connector_state_dict)
self.connector.to(self.dtype).to(self.device)
# Text encoders initialization
self.tokenizer = CLIPTokenizer.from_pretrained(MODEL_PATHS['flux'], subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(MODEL_PATHS['flux'], subfolder="text_encoder")
self.text_encoder_two = T5EncoderModel.from_pretrained(MODEL_PATHS['flux'], subfolder="text_encoder_2")
self.tokenizer_two = T5TokenizerFast.from_pretrained(MODEL_PATHS['flux'], subfolder="tokenizer_2")
self.text_encoder.requires_grad_(False).to(self.dtype).to(self.device)
self.text_encoder_two.requires_grad_(False).to(self.dtype).to(self.device)
# T5 context embedder
self.t5_context_embedder = nn.Linear(4096, 3072)
t5_embedder_path = os.path.join(MODEL_PATHS['qwen2vl'], "t5_embedder.pt")
t5_embedder_state_dict = torch.load(t5_embedder_path, map_location=self.device, weights_only=True)
self.t5_context_embedder.load_state_dict(t5_embedder_state_dict)
self.t5_context_embedder.to(self.dtype).to(self.device)
# Basic components
self.noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(MODEL_PATHS['flux'], subfolder="scheduler", shift=1)
self.vae = AutoencoderKL.from_pretrained(MODEL_PATHS['flux'], subfolder="vae")
self.transformer = FluxTransformer2DModel.from_pretrained(MODEL_PATHS['flux'], subfolder="transformer")
self.vae.requires_grad_(False).to(self.dtype).to(self.device)
self.transformer.requires_grad_(False).to(self.dtype).to(self.device)
def _init_controlnet(self):
"""Initialize ControlNet model"""
self.controlnet_union = FluxControlNetModel.from_pretrained(
MODEL_PATHS['controlnet'],
torch_dtype=torch.bfloat16
)
self.controlnet_union.requires_grad_(False).to(self.device)
self.controlnet = FluxMultiControlNetModel([self.controlnet_union])
def _init_depth_model(self):
"""Initialize Depth Anything V2 model"""
if not self._depth_model_imported:
from depth_anything_v2.dpt import DepthAnythingV2
self._depth_model_imported = True
self.depth_model = DepthAnythingV2(
encoder='vitl',
features=256,
out_channels=[256, 512, 1024, 1024]
)
depth_weights = os.path.join(MODEL_PATHS['depth_anything']['path'],
MODEL_PATHS['depth_anything']['weights'])
self.depth_model.load_state_dict(torch.load(depth_weights, map_location=self.device))
self.depth_model.requires_grad_(False).to(self.device)
def _init_line_detector(self):
"""Initialize line detection model"""
if not self._line_detector_imported:
from controlnet_aux import AnylineDetector
self._line_detector_imported = True
self.anyline = AnylineDetector.from_pretrained(
MODEL_PATHS['anyline']['path'],
filename=MODEL_PATHS['anyline']['weights']
)
self.anyline.to(self.device)
def _init_sam(self):
"""Initialize SAM2 model"""
if not self._sam_imported:
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
self._sam_imported = True
sam2_checkpoint = os.path.join(MODEL_PATHS['sam2']['path'],
MODEL_PATHS['sam2']['weights'])
model_cfg = os.path.join(MODEL_PATHS['sam2']['path'],
MODEL_PATHS['sam2']['config'])
self.sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=self.device)
self.sam2_predictor = SAM2ImagePredictor(self.sam2_model)
def _enable_turbo(self):
"""Enable turbo mode for faster inference"""
if not self._turbo_imported:
from optimum.quanto import freeze, qfloat8, quantize
self._turbo_imported = True
quantize(
self.transformer,
weights=qfloat8,
exclude=[
"*.norm", "*.norm1", "*.norm2", "*.norm2_context",
"proj_out", "x_embedder", "norm_out", "context_embedder",
],
)
freeze(self.transformer)
def generate_mask(self, image, input_points, input_labels):
"""
使用SAM2生成分割mask
Args:
image: PIL Image或numpy数组
input_points: numpy数组,形状为(N, 2),包含点的坐标
input_labels: numpy数组,形状为(N,),1表示前景点,0表示背景点
Returns:
PIL Image: 最高分数的mask
"""
try:
# 确保图像是numpy数组
if isinstance(image, Image.Image):
image_array = np.array(image)
else:
image_array = image
# 设置图像
self.sam2_predictor.set_image(image_array)
# 进行预测
with torch.inference_mode():
masks, scores, logits = self.sam2_predictor.predict(
point_coords=input_points,
point_labels=input_labels,
multimask_output=True,
)
# 返回得分最高的mask
best_mask_idx = scores.argmax()
mask = masks[best_mask_idx]
mask_image = Image.fromarray((mask * 255).astype(np.uint8))
return mask_image
except Exception as e:
print(f"Mask generation failed: {str(e)}")
raise
def recover_2d_shape(self, image_hidden_state, grid_thw):
batch_size, num_tokens, hidden_dim = image_hidden_state.shape
_, h, w = grid_thw
h_out = h // 2
w_out = w // 2
# 重塑为 (batch_size, height, width, hidden_dim)
reshaped = image_hidden_state.view(batch_size, h_out, w_out, hidden_dim)
return reshaped
def generate_attention_matrix(self, center_x, center_y, radius, image_shape):
height, width = image_shape
y, x = np.ogrid[:height, :width]
center_y, center_x = center_y * height, center_x * width
distances = np.sqrt((x - center_x)**2 + (y - center_y)**2)
attention = np.clip(1 - distances / (radius * min(height, width)), 0, 1)
return attention
def apply_attention(self, image_hidden_state, image_grid_thw, center_x, center_y, radius):
qwen2_2d_image_embedding = self.recover_2d_shape(image_hidden_state, tuple(image_grid_thw.tolist()[0]))
attention_matrix = self.generate_attention_matrix(
center_x, center_y, radius,
(qwen2_2d_image_embedding.size(1), qwen2_2d_image_embedding.size(2))
)
attention_tensor = torch.from_numpy(attention_matrix).to(self.dtype).unsqueeze(0).unsqueeze(-1)
qwen2_2d_image_embedding = qwen2_2d_image_embedding * attention_tensor.to(self.device)
return qwen2_2d_image_embedding.view(1, -1, qwen2_2d_image_embedding.size(3))
def compute_text_embeddings(self, prompt):
with torch.no_grad():
text_inputs = self.tokenizer(prompt, padding="max_length", max_length=77, truncation=True, return_tensors="pt")
text_input_ids = text_inputs.input_ids.to(self.device)
prompt_embeds = self.text_encoder(text_input_ids, output_hidden_states=False)
pooled_prompt_embeds = prompt_embeds.pooler_output
return pooled_prompt_embeds.to(self.dtype)
def compute_t5_text_embeddings(
self,
max_sequence_length=256,
prompt=None,
num_images_per_prompt=1,
device=None,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
text_inputs = self.tokenizer_two(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = self.text_encoder_two(text_input_ids.to(device))[0]
dtype = self.text_encoder_two.dtype
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
_, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds
def process_image(self, image):
message = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "Describe this image."},
]
}
]
text = self.qwen2vl_processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
with torch.no_grad():
inputs = self.qwen2vl_processor(text=[text], images=[image], padding=True, return_tensors="pt").to(self.device)
output_hidden_state, image_token_mask, image_grid_thw = self.qwen2vl(**inputs)
image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
return image_hidden_state, image_grid_thw
def resize_image(self, img, max_pixels=1050000):
# 确保输入是 PIL Image
if not isinstance(img, Image.Image):
img = Image.fromarray(img)
width, height = img.size
num_pixels = width * height
if num_pixels > max_pixels:
scale = math.sqrt(max_pixels / num_pixels)
new_width = int(width * scale)
new_height = int(height * scale)
# 调整宽度和高度,使其能被8整除
new_width = new_width - (new_width % 8)
new_height = new_height - (new_height % 8)
img = img.resize((new_width, new_height), Image.LANCZOS)
else:
# 如果图片不需要缩小,仍然需要确保尺寸能被8整除
new_width = width - (width % 8)
new_height = height - (height % 8)
if new_width != width or new_height != height:
img = img.resize((new_width, new_height), Image.LANCZOS)
return img
def generate_depth_map(self, image):
"""Generate depth map using Depth Anything V2"""
# Convert PIL to numpy array
image_np = np.array(image)
# Convert RGB to BGR for cv2
image_bgr = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
# Generate depth map
with torch.no_grad():
depth = self.depth_model.infer_image(image_bgr)
# Normalize depth to 0-1 range
depth_norm = (depth - depth.min()) / (depth.max() - depth.min())
# Convert to RGB image
depth_rgb = (depth_norm * 255).astype(np.uint8)
depth_rgb = cv2.cvtColor(depth_rgb, cv2.COLOR_GRAY2RGB)
return Image.fromarray(depth_rgb)
def generate(self, input_image_a, input_image_b=None, prompt="", guidance_scale=3.5, num_inference_steps=28,
aspect_ratio="1:1", center_x=None, center_y=None, radius=None, mode="variation",
denoise_strength=0.8, mask_image=None, imageCount=2,
line_mode=True, depth_mode=True, line_strength=0.4, depth_strength=0.2):
batch_size = imageCount
if aspect_ratio not in ASPECT_RATIOS:
raise ValueError(f"Invalid aspect ratio. Choose from {list(ASPECT_RATIOS.keys())}")
width, height = ASPECT_RATIOS[aspect_ratio]
pooled_prompt_embeds = self.compute_text_embeddings(prompt="")
t5_prompt_embeds = None
if prompt != "":
self.qwen2vl_processor = AutoProcessor.from_pretrained(MODEL_PATHS['qwen2vl'], min_pixels=256*28*28, max_pixels=256*28*28)
t5_prompt_embeds = self.compute_t5_text_embeddings(prompt=prompt, device=self.device)
t5_prompt_embeds = self.t5_context_embedder(t5_prompt_embeds)
else:
self.qwen2vl_processor = AutoProcessor.from_pretrained(MODEL_PATHS['qwen2vl'], min_pixels=512*28*28, max_pixels=512*28*28)
qwen2_hidden_state_a, image_grid_thw_a = self.process_image(input_image_a)
# 只有当所有注意力参数都被提供时,才应用注意力机制
if mode == "variation":
if center_x is not None and center_y is not None and radius is not None:
qwen2_hidden_state_a = self.apply_attention(qwen2_hidden_state_a, image_grid_thw_a, center_x, center_y, radius)
qwen2_hidden_state_a = self.connector(qwen2_hidden_state_a)
if mode == "img2img" or mode == "inpaint":
if input_image_b:
qwen2_hidden_state_b, image_grid_thw_b = self.process_image(input_image_b)
if center_x is not None and center_y is not None and radius is not None:
qwen2_hidden_state_b = self.apply_attention(qwen2_hidden_state_b, image_grid_thw_b, center_x, center_y, radius)
qwen2_hidden_state_b = self.connector(qwen2_hidden_state_b)
else:
qwen2_hidden_state_a = self.connector(qwen2_hidden_state_a)
qwen2_hidden_state_b = None
if mode == "controlnet" or mode == "controlnet-inpaint":
qwen2_hidden_state_b = None
if input_image_b:
qwen2_hidden_state_b, image_grid_thw_b = self.process_image(input_image_b)
if center_x is not None and center_y is not None and radius is not None:
qwen2_hidden_state_b = self.apply_attention(qwen2_hidden_state_b, image_grid_thw_b, center_x, center_y, radius)
qwen2_hidden_state_b = self.connector(qwen2_hidden_state_b)
qwen2_hidden_state_a = self.connector(qwen2_hidden_state_a)
#############################
# IMAGE GENERATION
#############################
if mode == "variation":
# Initialize different pipelines
pipeline = FluxPipeline(
transformer=self.transformer,
scheduler=self.noise_scheduler,
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
)
gen_images = pipeline(
prompt_embeds=qwen2_hidden_state_a.repeat(batch_size, 1, 1),
t5_prompt_embeds=t5_prompt_embeds.repeat(batch_size, 1, 1) if t5_prompt_embeds is not None else None,
pooled_prompt_embeds=pooled_prompt_embeds,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
).images
#############################
# IMAGE-TO-IMAGE
#############################
elif mode == "img2img":
input_image_a = self.resize_image(input_image_a)
width, height = input_image_a.size
img2img_pipeline = FluxImg2ImgPipeline(
transformer=self.transformer,
scheduler=self.noise_scheduler,
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
)
gen_images = img2img_pipeline(
image=input_image_a,
strength=denoise_strength,
prompt_embeds=qwen2_hidden_state_b.repeat(batch_size, 1, 1) if qwen2_hidden_state_b is not None else qwen2_hidden_state_a.repeat(batch_size, 1, 1),
t5_prompt_embeds=t5_prompt_embeds.repeat(batch_size, 1, 1) if t5_prompt_embeds is not None else None,
pooled_prompt_embeds=pooled_prompt_embeds,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
).images
#############################
# INPAINTING
#############################
elif mode == "inpaint":
if mask_image is None:
raise ValueError("Mask image is required for inpainting mode")
input_image_a = self.resize_image(input_image_a)
mask_image = self.resize_image(mask_image)
width, height = input_image_a.size
inpaint_pipeline = FluxInpaintPipeline(
transformer=self.transformer,
scheduler=self.noise_scheduler,
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
)
gen_images = inpaint_pipeline(
image=input_image_a,
mask_image=mask_image,
strength=denoise_strength,
prompt_embeds=qwen2_hidden_state_b.repeat(batch_size, 1, 1) if qwen2_hidden_state_b is not None else qwen2_hidden_state_a.repeat(batch_size, 1, 1),
t5_prompt_embeds=t5_prompt_embeds.repeat(batch_size, 1, 1) if t5_prompt_embeds is not None else None,
pooled_prompt_embeds=pooled_prompt_embeds,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
).images
#############################
# CONTROLNET
#############################
elif mode == "controlnet":
input_image_a = self.resize_image(input_image_a)
width, height = input_image_a.size
controlnet_pipeline = FluxControlNetImg2ImgPipeline(
transformer=self.transformer,
scheduler=self.noise_scheduler,
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
controlnet=self.controlnet,
)
# 准备控制图像和模式列表
control_images = []
control_modes = []
conditioning_scales = []
# 根据用户选择添加控制模式
if depth_mode:
control_image_depth = self.generate_depth_map(input_image_a)
control_images.append(control_image_depth)
control_modes.append(2) # depth mode
conditioning_scales.append(depth_strength)
if line_mode:
control_image_canny = self.anyline(input_image_a, detect_resolution=1280)
control_images.append(control_image_canny)
control_modes.append(0) # line mode
conditioning_scales.append(line_strength)
# 如果没有启用任何模式,默认使用line+depth模式
if not line_mode and not depth_mode:
control_image_depth = self.generate_depth_map(input_image_a)
control_image_canny = self.anyline(input_image_a, detect_resolution=1280)
control_images = [control_image_depth, control_image_canny]
control_modes = [2, 0]
conditioning_scales = [0.2, 0.4]
if qwen2_hidden_state_b is not None:
qwen2_hidden_state_b = qwen2_hidden_state_b[:, :qwen2_hidden_state_a.shape[1], :]
qwen2_hidden_state_a = qwen2_hidden_state_a[:, :qwen2_hidden_state_b.shape[1], :]
gen_images = controlnet_pipeline(
image=input_image_a,
strength=denoise_strength,
control_image=control_images,
control_mode=control_modes,
controlnet_conditioning_scale=conditioning_scales,
prompt_embeds=qwen2_hidden_state_b.repeat(batch_size, 1, 1) if qwen2_hidden_state_b is not None else qwen2_hidden_state_a.repeat(batch_size, 1, 1),
t5_prompt_embeds=t5_prompt_embeds.repeat(batch_size, 1, 1) if t5_prompt_embeds is not None else None,
prompt_embeds_control=qwen2_hidden_state_a.repeat(batch_size, 1, 1),
pooled_prompt_embeds=pooled_prompt_embeds,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
).images
#############################
# CONTROLNET INPAINT
#############################
elif mode == "controlnet-inpaint":
input_image_a = self.resize_image(input_image_a)
mask_image = self.resize_image(mask_image)
width, height = input_image_a.size
controlnet_pipeline = FluxControlNetInpaintPipeline(
transformer=self.transformer,
scheduler=self.noise_scheduler,
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
controlnet=self.controlnet,
)
# 准备控制图像和模式列表
control_images = []
control_modes = []
conditioning_scales = []
# 根据用户选择添加控制模式
if depth_mode:
control_image_depth = self.generate_depth_map(input_image_a)
control_images.append(control_image_depth)
control_modes.append(2) # depth mode
conditioning_scales.append(depth_strength)
if line_mode:
control_image_canny = self.anyline(input_image_a, detect_resolution=1280)
control_images.append(control_image_canny)
control_modes.append(0) # line mode
conditioning_scales.append(line_strength)
# 如果没有启用任何模式,默认使用line+depth模式
if not line_mode and not depth_mode:
control_image_depth = self.generate_depth_map(input_image_a)
control_image_canny = self.anyline(input_image_a, detect_resolution=1280)
control_images = [control_image_depth, control_image_canny]
control_modes = [2, 0]
conditioning_scales = [0.2, 0.4]
if qwen2_hidden_state_b is not None:
qwen2_hidden_state_b = qwen2_hidden_state_b[:, :qwen2_hidden_state_a.shape[1], :]
qwen2_hidden_state_a = qwen2_hidden_state_a[:, :qwen2_hidden_state_b.shape[1], :]
gen_images = controlnet_pipeline(
image=input_image_a,
mask_image=mask_image,
control_image=control_images,
control_mode=control_modes,
controlnet_conditioning_scale=conditioning_scales,
strength=denoise_strength,
prompt_embeds=qwen2_hidden_state_b.repeat(batch_size, 1, 1) if qwen2_hidden_state_b is not None else qwen2_hidden_state_a.repeat(batch_size, 1, 1),
t5_prompt_embeds=t5_prompt_embeds.repeat(batch_size, 1, 1) if t5_prompt_embeds is not None else None,
prompt_embeds_control=qwen2_hidden_state_a.repeat(batch_size, 1, 1),
pooled_prompt_embeds=pooled_prompt_embeds,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
).images
else:
raise ValueError(f"Invalid mode: {mode}")
return gen_images