John6666's picture
Upload 46 files
0eea822 verified
from typing import Tuple
import requests
import random
import numpy as np
import gradio as gr
import spaces
import torch
from PIL import Image
from huggingface_hub import login
import os
import time
from gradio_imageslider import ImageSlider
import requests
from io import BytesIO
import PIL.Image
import requests
import shutil
import glob
from huggingface_hub import snapshot_download, hf_hub_download
MAX_SEED = np.iinfo(np.int32).max
IMAGE_SIZE = 1024
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
HF_TOKEN = os.environ.get("HF_TOKEN")
if HF_TOKEN: login(token=HF_TOKEN)
cp_dir = os.getenv('CHECKPOINT_DIR', 'checkpoints')
snapshot_download("Djrango/Qwen2vl-Flux", local_dir=cp_dir)
hf_hub_download(repo_id="TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline", local_dir=f"{cp_dir}/anyline")
shutil.move("checkpoints/anyline/Anyline/MTEED.pth", f"{cp_dir}/anyline")
snapshot_download("depth-anything/Depth-Anything-V2-Large", local_dir=f"{cp_dir}/depth-anything-v2")
snapshot_download("facebook/sam2-hiera-large", local_dir=f"{cp_dir}/segment-anything-2")
# https://github.com/facebookresearch/sam2/issues/26
os.makedirs("sam2_configs", exist_ok=True)
for p in glob.glob(f"{cp_dir}/segment-anything-2/*.yaml"):
shutil.copy(p, "sam2_configs")
from modelmod import FluxModel
model = FluxModel(device=DEVICE, is_turbo=False, required_features=['controlnet', 'depth', 'line'], is_quantization=True) # , 'sam'
QWEN2VLFLUX_MODES = ["variation", "img2img", "inpaint", "controlnet", "controlnet-inpaint"]
QWEN2VLFLUX_ASPECT_RATIO = ["1:1", "16:9", "9:16", "2.4:1", "3:4", "4:3"]
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time))
print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}")
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time))
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
print(f"Activity: {self.activity_name}, End time: {self.start_time_formatted}")
def resize_image_dimensions(
original_resolution_wh: Tuple[int, int],
maximum_dimension: int = IMAGE_SIZE
) -> Tuple[int, int]:
width, height = original_resolution_wh
# if width <= maximum_dimension and height <= maximum_dimension:
# width = width - (width % 32)
# height = height - (height % 32)
# return width, height
if width > height:
scaling_factor = maximum_dimension / width
else:
scaling_factor = maximum_dimension / height
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
new_width = new_width - (new_width % 32)
new_height = new_height - (new_height % 32)
return new_width, new_height
def fetch_from_url(url: str, name: str):
try:
print(f"start to fetch {name} from url", url)
response = requests.get(url)
response.raise_for_status()
image = PIL.Image.open(BytesIO(response.content))
print(f"fetch {name} success")
return image
except Exception as e:
print(e)
return None
@spaces.GPU(duration=100)
@torch.inference_mode()
def process(
mode: str,
input_image_editor: dict,
ref_image: Image.Image,
image_url: str,
mask_url: str,
ref_url: str,
input_text: str,
strength: float,
num_inference_steps: int,
guidance_scale: float,
aspect_ratio: str,
attn_mode: bool,
center_x: float,
center_y: float,
radius: float,
line_mode: bool,
line_strength: float,
depth_mode: bool,
depth_strength: float,
progress=gr.Progress(track_tqdm=True)
):
#if not input_text:
# gr.Info("Please enter a text prompt.")
# return None
kwargs = {}
image = input_image_editor['background']
mask = input_image_editor['layers'][0]
if image_url: image = fetch_from_url(image_url, "image")
if mask_url: mask = fetch_from_url(mask_url, "mask")
if ref_url: ref_image = fetch_from_url(ref_url, "refernce image")
if not image:
gr.Info("Please upload an image.")
return None
if ref_image: kwargs["input_image_b"] = ref_image
if mode == "inpaint" or mode == "controlnet-inpaint":
if not mask:
gr.Info("Please draw a mask on the image.")
return None
kwargs["mask_image"] = mask
if attn_mode:
kwargs["center_x"] = center_x
kwargs["center_y"] = center_y
kwargs["radius"] = radius
with calculateDuration("run inference"):
result = model.generate(
input_image_a=image,
prompt=input_text,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
aspect_ratio=aspect_ratio,
mode=mode,
denoise_strength=strength,
line_mode=line_mode,
line_strength=line_strength,
depth_mode=depth_mode,
depth_strength=depth_strength,
imageCount=1,
**kwargs
)[0]
#return result
return [image, result]
CSS = """
.title { text-align: center; }
"""
with gr.Blocks(fill_width=True, css=CSS) as demo:
gr.Markdown("# Qwen2VL-Flux", elem_classes="title")
with gr.Row():
with gr.Column():
gen_mode = gr.Radio(label="Generation mode", choices=QWEN2VLFLUX_MODES, value="variation")
with gr.Row():
input_image_editor = gr.ImageEditor(label='Image', type='pil', sources=["upload", "webcam", "clipboard"], image_mode='RGB',
layers=False, brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
ref_image = gr.Image(label='Reference image', type='pil', sources=["upload", "webcam", "clipboard"], image_mode='RGB')
with gr.Accordion("Image from URL", open=False):
image_url = gr.Textbox(label="Image url", show_label=True, max_lines=1, placeholder="Enter your image url (Optional)")
mask_url = gr.Textbox(label="Mask image url", show_label=True, max_lines=1, placeholder="Enter your mask image url (Optional)")
ref_url = gr.Textbox(label="Reference image url", show_label=True, max_lines=1, placeholder="Enter your reference image url (Optional)")
with gr.Accordion("Prompt Settings", open=True):
input_text = gr.Textbox(label="Prompt", show_label=True, max_lines=1, placeholder="Enter your prompt")
submit_button = gr.Button(value='Submit', variant='primary')
with gr.Accordion("Advanced Settings", open=True):
with gr.Row():
denoise_strength = gr.Slider(label="Denoise strength", minimum=0, maximum=1, step=0.01, value=0.75)
aspect_ratio = gr.Radio(label="Output image ratio", choices=QWEN2VLFLUX_ASPECT_RATIO, value="1:1")
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=20, step=0.5, value=3.5)
with gr.Accordion("Attention Control", open=True):
with gr.Row():
attn_mode = gr.Checkbox(label="Attention Control", value=False)
center_x = gr.Slider(label="X coordinate of attention center", minimum=0, maximum=1, step=0.01, value=0.5)
center_y = gr.Slider(label="Y coordinate of attention center", minimum=0, maximum=1, step=0.01, value=0.5)
radius = gr.Slider(label="Radius of attention circle", minimum=0, maximum=1, step=0.01, value=0.5)
with gr.Accordion("ControlNet Settings", open=True):
with gr.Row():
line_mode = gr.Checkbox(label="Line mode", value=True)
line_strength = gr.Slider(label="Line strength", minimum=0, maximum=1, step=0.01, value=0.4)
depth_mode = gr.Checkbox(label="Depth mode", value=True)
depth_strength = gr.Slider(label="Depth strength", minimum=0, maximum=1, step=0.01, value=0.2)
with gr.Column():
#output_image = gr.Image(label="Generated image", type="pil", format="png", show_download_button=True, show_share_button=False)
output_image = ImageSlider(label="Generated image", type="pil")
gr.on(triggers=[submit_button.click, input_text.submit], fn=process,
inputs=[gen_mode, input_image_editor, ref_image, image_url, mask_url, ref_url,
input_text, denoise_strength, num_inference_steps, guidance_scale, aspect_ratio,
attn_mode, center_x, center_y, radius, line_mode, line_strength, depth_mode, depth_strength],
outputs=[output_image], queue=True)
demo.queue().launch(debug=True, show_error=True)
#demo.queue().launch(debug=True, show_error=True, ssr_mode=False) # Gradio 5