Spaces:
Runtime error
Runtime error
File size: 9,588 Bytes
0eea822 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
from typing import Tuple
import requests
import random
import numpy as np
import gradio as gr
import spaces
import torch
from PIL import Image
from huggingface_hub import login
import os
import time
from gradio_imageslider import ImageSlider
import requests
from io import BytesIO
import PIL.Image
import requests
import shutil
import glob
from huggingface_hub import snapshot_download, hf_hub_download
MAX_SEED = np.iinfo(np.int32).max
IMAGE_SIZE = 1024
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
HF_TOKEN = os.environ.get("HF_TOKEN")
if HF_TOKEN: login(token=HF_TOKEN)
cp_dir = os.getenv('CHECKPOINT_DIR', 'checkpoints')
snapshot_download("Djrango/Qwen2vl-Flux", local_dir=cp_dir)
hf_hub_download(repo_id="TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline", local_dir=f"{cp_dir}/anyline")
shutil.move("checkpoints/anyline/Anyline/MTEED.pth", f"{cp_dir}/anyline")
snapshot_download("depth-anything/Depth-Anything-V2-Large", local_dir=f"{cp_dir}/depth-anything-v2")
snapshot_download("facebook/sam2-hiera-large", local_dir=f"{cp_dir}/segment-anything-2")
# https://github.com/facebookresearch/sam2/issues/26
os.makedirs("sam2_configs", exist_ok=True)
for p in glob.glob(f"{cp_dir}/segment-anything-2/*.yaml"):
shutil.copy(p, "sam2_configs")
from modelmod import FluxModel
model = FluxModel(device=DEVICE, is_turbo=False, required_features=['controlnet', 'depth', 'line'], is_quantization=True) # , 'sam'
QWEN2VLFLUX_MODES = ["variation", "img2img", "inpaint", "controlnet", "controlnet-inpaint"]
QWEN2VLFLUX_ASPECT_RATIO = ["1:1", "16:9", "9:16", "2.4:1", "3:4", "4:3"]
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time))
print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}")
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time))
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
print(f"Activity: {self.activity_name}, End time: {self.start_time_formatted}")
def resize_image_dimensions(
original_resolution_wh: Tuple[int, int],
maximum_dimension: int = IMAGE_SIZE
) -> Tuple[int, int]:
width, height = original_resolution_wh
# if width <= maximum_dimension and height <= maximum_dimension:
# width = width - (width % 32)
# height = height - (height % 32)
# return width, height
if width > height:
scaling_factor = maximum_dimension / width
else:
scaling_factor = maximum_dimension / height
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
new_width = new_width - (new_width % 32)
new_height = new_height - (new_height % 32)
return new_width, new_height
def fetch_from_url(url: str, name: str):
try:
print(f"start to fetch {name} from url", url)
response = requests.get(url)
response.raise_for_status()
image = PIL.Image.open(BytesIO(response.content))
print(f"fetch {name} success")
return image
except Exception as e:
print(e)
return None
@spaces.GPU(duration=100)
@torch.inference_mode()
def process(
mode: str,
input_image_editor: dict,
ref_image: Image.Image,
image_url: str,
mask_url: str,
ref_url: str,
input_text: str,
strength: float,
num_inference_steps: int,
guidance_scale: float,
aspect_ratio: str,
attn_mode: bool,
center_x: float,
center_y: float,
radius: float,
line_mode: bool,
line_strength: float,
depth_mode: bool,
depth_strength: float,
progress=gr.Progress(track_tqdm=True)
):
#if not input_text:
# gr.Info("Please enter a text prompt.")
# return None
kwargs = {}
image = input_image_editor['background']
mask = input_image_editor['layers'][0]
if image_url: image = fetch_from_url(image_url, "image")
if mask_url: mask = fetch_from_url(mask_url, "mask")
if ref_url: ref_image = fetch_from_url(ref_url, "refernce image")
if not image:
gr.Info("Please upload an image.")
return None
if ref_image: kwargs["input_image_b"] = ref_image
if mode == "inpaint" or mode == "controlnet-inpaint":
if not mask:
gr.Info("Please draw a mask on the image.")
return None
kwargs["mask_image"] = mask
if attn_mode:
kwargs["center_x"] = center_x
kwargs["center_y"] = center_y
kwargs["radius"] = radius
with calculateDuration("run inference"):
result = model.generate(
input_image_a=image,
prompt=input_text,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
aspect_ratio=aspect_ratio,
mode=mode,
denoise_strength=strength,
line_mode=line_mode,
line_strength=line_strength,
depth_mode=depth_mode,
depth_strength=depth_strength,
imageCount=1,
**kwargs
)[0]
#return result
return [image, result]
CSS = """
.title { text-align: center; }
"""
with gr.Blocks(fill_width=True, css=CSS) as demo:
gr.Markdown("# Qwen2VL-Flux", elem_classes="title")
with gr.Row():
with gr.Column():
gen_mode = gr.Radio(label="Generation mode", choices=QWEN2VLFLUX_MODES, value="variation")
with gr.Row():
input_image_editor = gr.ImageEditor(label='Image', type='pil', sources=["upload", "webcam", "clipboard"], image_mode='RGB',
layers=False, brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
ref_image = gr.Image(label='Reference image', type='pil', sources=["upload", "webcam", "clipboard"], image_mode='RGB')
with gr.Accordion("Image from URL", open=False):
image_url = gr.Textbox(label="Image url", show_label=True, max_lines=1, placeholder="Enter your image url (Optional)")
mask_url = gr.Textbox(label="Mask image url", show_label=True, max_lines=1, placeholder="Enter your mask image url (Optional)")
ref_url = gr.Textbox(label="Reference image url", show_label=True, max_lines=1, placeholder="Enter your reference image url (Optional)")
with gr.Accordion("Prompt Settings", open=True):
input_text = gr.Textbox(label="Prompt", show_label=True, max_lines=1, placeholder="Enter your prompt")
submit_button = gr.Button(value='Submit', variant='primary')
with gr.Accordion("Advanced Settings", open=True):
with gr.Row():
denoise_strength = gr.Slider(label="Denoise strength", minimum=0, maximum=1, step=0.01, value=0.75)
aspect_ratio = gr.Radio(label="Output image ratio", choices=QWEN2VLFLUX_ASPECT_RATIO, value="1:1")
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=20, step=0.5, value=3.5)
with gr.Accordion("Attention Control", open=True):
with gr.Row():
attn_mode = gr.Checkbox(label="Attention Control", value=False)
center_x = gr.Slider(label="X coordinate of attention center", minimum=0, maximum=1, step=0.01, value=0.5)
center_y = gr.Slider(label="Y coordinate of attention center", minimum=0, maximum=1, step=0.01, value=0.5)
radius = gr.Slider(label="Radius of attention circle", minimum=0, maximum=1, step=0.01, value=0.5)
with gr.Accordion("ControlNet Settings", open=True):
with gr.Row():
line_mode = gr.Checkbox(label="Line mode", value=True)
line_strength = gr.Slider(label="Line strength", minimum=0, maximum=1, step=0.01, value=0.4)
depth_mode = gr.Checkbox(label="Depth mode", value=True)
depth_strength = gr.Slider(label="Depth strength", minimum=0, maximum=1, step=0.01, value=0.2)
with gr.Column():
#output_image = gr.Image(label="Generated image", type="pil", format="png", show_download_button=True, show_share_button=False)
output_image = ImageSlider(label="Generated image", type="pil")
gr.on(triggers=[submit_button.click, input_text.submit], fn=process,
inputs=[gen_mode, input_image_editor, ref_image, image_url, mask_url, ref_url,
input_text, denoise_strength, num_inference_steps, guidance_scale, aspect_ratio,
attn_mode, center_x, center_y, radius, line_mode, line_strength, depth_mode, depth_strength],
outputs=[output_image], queue=True)
demo.queue().launch(debug=True, show_error=True)
#demo.queue().launch(debug=True, show_error=True, ssr_mode=False) # Gradio 5 |