Spaces:
Running
on
Zero
Running
on
Zero
Upload 5 files
Browse files- app.py +112 -24
- loras.json +34 -9
- mod.py +12 -0
- requirements.txt +1 -1
app.py
CHANGED
@@ -2,16 +2,17 @@ import spaces
|
|
2 |
import gradio as gr
|
3 |
import json
|
4 |
import torch
|
5 |
-
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
6 |
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
|
7 |
-
from diffusers import
|
|
|
8 |
from huggingface_hub import HfFileSystem, ModelCard
|
9 |
import random
|
10 |
import time
|
11 |
|
12 |
from env import models, num_loras, num_cns
|
13 |
from mod import (clear_cache, get_repo_safetensors, is_repo_name, is_repo_exists, get_model_trigger,
|
14 |
-
description_ui, compose_lora_json, is_valid_lora, fuse_loras, save_image,
|
15 |
get_trigger_word, enhance_prompt, deselect_lora, set_control_union_image,
|
16 |
get_control_union_mode, set_control_union_mode, get_control_params, translate_to_en)
|
17 |
from flux import (search_civitai_lora, select_civitai_lora, search_civitai_lora_json,
|
@@ -34,6 +35,8 @@ dtype = torch.bfloat16
|
|
34 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
35 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype)
|
36 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1)
|
|
|
|
|
37 |
controlnet_union = None
|
38 |
controlnet = None
|
39 |
last_model = models[0]
|
@@ -45,9 +48,11 @@ MAX_SEED = 2**32-1
|
|
45 |
|
46 |
# https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
|
47 |
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union
|
|
|
48 |
#@spaces.GPU()
|
49 |
-
def change_base_model(repo_id: str, cn_on: bool,
|
50 |
global pipe
|
|
|
51 |
global taef1
|
52 |
global good_vae
|
53 |
global controlnet_union
|
@@ -56,8 +61,9 @@ def change_base_model(repo_id: str, cn_on: bool, progress=gr.Progress(track_tqdm
|
|
56 |
global last_cn_on
|
57 |
global dtype
|
58 |
try:
|
59 |
-
if (repo_id == last_model and cn_on is last_cn_on) or not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(visible=True)
|
60 |
pipe.to("cpu")
|
|
|
61 |
good_vae.to("cpu")
|
62 |
taef1.to("cpu")
|
63 |
if controlnet is not None: controlnet.to("cpu")
|
@@ -69,6 +75,8 @@ def change_base_model(repo_id: str, cn_on: bool, progress=gr.Progress(track_tqdm
|
|
69 |
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
|
70 |
controlnet = FluxMultiControlNetModel([controlnet_union])
|
71 |
pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype)
|
|
|
|
|
72 |
last_model = repo_id
|
73 |
last_cn_on = cn_on
|
74 |
progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
|
@@ -77,6 +85,8 @@ def change_base_model(repo_id: str, cn_on: bool, progress=gr.Progress(track_tqdm
|
|
77 |
progress(0, desc=f"Loading model: {repo_id}")
|
78 |
print(f"Loading model: {repo_id}")
|
79 |
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype)
|
|
|
|
|
80 |
last_model = repo_id
|
81 |
last_cn_on = cn_on
|
82 |
progress(1, desc=f"Model loaded: {repo_id}")
|
@@ -183,7 +193,67 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
183 |
print(e)
|
184 |
raise gr.Error(f"Inference Error: {e}") from e
|
185 |
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
lora_scale, lora_json, cn_on, translate_on, progress=gr.Progress(track_tqdm=True)):
|
188 |
global pipe
|
189 |
if selected_index is None and not is_valid_lora(lora_json):
|
@@ -195,6 +265,8 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
195 |
try:
|
196 |
pipe.unfuse_lora()
|
197 |
pipe.unload_lora_weights()
|
|
|
|
|
198 |
except Exception as e:
|
199 |
print(e)
|
200 |
|
@@ -225,10 +297,16 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
225 |
prompt_mash = prompt_mash
|
226 |
# Load LoRA weights
|
227 |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
228 |
-
if
|
229 |
-
|
|
|
|
|
|
|
230 |
else:
|
231 |
-
|
|
|
|
|
|
|
232 |
|
233 |
# Set random seed for reproducibility
|
234 |
with calculateDuration("Randomizing seed"):
|
@@ -236,17 +314,20 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
236 |
seed = random.randint(0, MAX_SEED)
|
237 |
|
238 |
progress(0, desc="Running Inference.")
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
final_image =
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
250 |
|
251 |
def get_huggingface_safetensors(link):
|
252 |
split_link = link.split("/")
|
@@ -392,8 +473,14 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css, delete_cache
|
|
392 |
model_info = gr.Markdown(elem_classes="info")
|
393 |
with gr.Row():
|
394 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
395 |
with gr.Column():
|
396 |
with gr.Row():
|
|
|
397 |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
398 |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
399 |
with gr.Row():
|
@@ -402,7 +489,7 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css, delete_cache
|
|
402 |
with gr.Row():
|
403 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
404 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
405 |
-
|
406 |
with gr.Accordion("External LoRA", open=True):
|
407 |
with gr.Column():
|
408 |
lora_repo_json = gr.JSON(value=[{}] * num_loras, visible=False)
|
@@ -486,20 +573,21 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css, delete_cache
|
|
486 |
gr.on(
|
487 |
triggers=[generate_button.click, prompt.submit],
|
488 |
fn=change_base_model,
|
489 |
-
inputs=[model_name, cn_on],
|
490 |
outputs=[result],
|
491 |
queue=True,
|
492 |
show_api=False,
|
493 |
trigger_mode="once",
|
494 |
).success(
|
495 |
fn=run_lora,
|
496 |
-
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
497 |
lora_scale, lora_repo_json, cn_on, auto_trans],
|
498 |
outputs=[result, seed, progress_bar],
|
499 |
queue=True,
|
500 |
show_api=True,
|
501 |
)
|
502 |
|
|
|
503 |
deselect_lora_button.click(deselect_lora, None, [prompt, selected_info, selected_index, width, height], queue=False, show_api=False)
|
504 |
gr.on(
|
505 |
triggers=[model_name.change, cn_on.change],
|
@@ -509,7 +597,7 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css, delete_cache
|
|
509 |
queue=False,
|
510 |
show_api=False,
|
511 |
trigger_mode="once",
|
512 |
-
).then(change_base_model, [model_name, cn_on], [result], queue=True, show_api=False)
|
513 |
prompt_enhance.click(enhance_prompt, [prompt], [prompt], queue=False, show_api=False)
|
514 |
|
515 |
gr.on(
|
|
|
2 |
import gradio as gr
|
3 |
import json
|
4 |
import torch
|
5 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
|
6 |
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
|
7 |
+
from diffusers.utils import load_image
|
8 |
+
from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel, FluxControlNetImg2ImgPipeline
|
9 |
from huggingface_hub import HfFileSystem, ModelCard
|
10 |
import random
|
11 |
import time
|
12 |
|
13 |
from env import models, num_loras, num_cns
|
14 |
from mod import (clear_cache, get_repo_safetensors, is_repo_name, is_repo_exists, get_model_trigger,
|
15 |
+
description_ui, compose_lora_json, is_valid_lora, fuse_loras, save_image, preprocess_i2i_image,
|
16 |
get_trigger_word, enhance_prompt, deselect_lora, set_control_union_image,
|
17 |
get_control_union_mode, set_control_union_mode, get_control_params, translate_to_en)
|
18 |
from flux import (search_civitai_lora, select_civitai_lora, search_civitai_lora_json,
|
|
|
35 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
36 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype)
|
37 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1)
|
38 |
+
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model, vae=good_vae, transformer=pipe.transformer, text_encoder=pipe.text_encoder,
|
39 |
+
tokenizer=pipe.tokenizer, text_encoder_2=pipe.text_encoder_2, tokenizer_2=pipe.tokenizer_2, torch_dtype=dtype)
|
40 |
controlnet_union = None
|
41 |
controlnet = None
|
42 |
last_model = models[0]
|
|
|
48 |
|
49 |
# https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
|
50 |
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union
|
51 |
+
# https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux
|
52 |
#@spaces.GPU()
|
53 |
+
def change_base_model(repo_id: str, cn_on: bool, disable_model_cache: bool, progress=gr.Progress(track_tqdm=True)):
|
54 |
global pipe
|
55 |
+
global pipe_i2i
|
56 |
global taef1
|
57 |
global good_vae
|
58 |
global controlnet_union
|
|
|
61 |
global last_cn_on
|
62 |
global dtype
|
63 |
try:
|
64 |
+
if not disable_model_cache and (repo_id == last_model and cn_on is last_cn_on) or not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(visible=True)
|
65 |
pipe.to("cpu")
|
66 |
+
pipe_i2i.to("cpu")
|
67 |
good_vae.to("cpu")
|
68 |
taef1.to("cpu")
|
69 |
if controlnet is not None: controlnet.to("cpu")
|
|
|
75 |
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
|
76 |
controlnet = FluxMultiControlNetModel([controlnet_union])
|
77 |
pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype)
|
78 |
+
pipe_i2i = FluxControlNetImg2ImgPipeline.from_pretrained(repo_id, controlnet=controlnet, vae=None, transformer=pipe.transformer, text_encoder=pipe.text_encoder,
|
79 |
+
tokenizer=pipe.tokenizer, text_encoder_2=pipe.text_encoder_2, tokenizer_2=pipe.tokenizer_2, torch_dtype=dtype)
|
80 |
last_model = repo_id
|
81 |
last_cn_on = cn_on
|
82 |
progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
|
|
|
85 |
progress(0, desc=f"Loading model: {repo_id}")
|
86 |
print(f"Loading model: {repo_id}")
|
87 |
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype)
|
88 |
+
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(repo_id, vae=None, transformer=pipe.transformer, text_encoder=pipe.text_encoder,
|
89 |
+
tokenizer=pipe.tokenizer, text_encoder_2=pipe.text_encoder_2, tokenizer_2=pipe.tokenizer_2, torch_dtype=dtype)
|
90 |
last_model = repo_id
|
91 |
last_cn_on = cn_on
|
92 |
progress(1, desc=f"Model loaded: {repo_id}")
|
|
|
193 |
print(e)
|
194 |
raise gr.Error(f"Inference Error: {e}") from e
|
195 |
|
196 |
+
@spaces.GPU(duration=70)
|
197 |
+
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed, cn_on, progress=gr.Progress(track_tqdm=True)):
|
198 |
+
global pipe_i2i
|
199 |
+
global good_vae
|
200 |
+
global controlnet
|
201 |
+
global controlnet_union
|
202 |
+
try:
|
203 |
+
good_vae.to("cuda")
|
204 |
+
generator = torch.Generator(device="cuda").manual_seed(int(float(seed)))
|
205 |
+
image_input = load_image(image_input_path)
|
206 |
+
|
207 |
+
with calculateDuration("Generating image"):
|
208 |
+
# Generate image
|
209 |
+
modes, images, scales = get_control_params()
|
210 |
+
if True or not cn_on or len(modes) == 0:
|
211 |
+
pipe_i2i.to("cuda")
|
212 |
+
pipe_i2i.vae = good_vae
|
213 |
+
image_input = load_image(image_input_path)
|
214 |
+
progress(0, desc="Start I2I Inference.")
|
215 |
+
final_image = pipe_i2i(
|
216 |
+
prompt=prompt_mash,
|
217 |
+
image=image_input,
|
218 |
+
strength=image_strength,
|
219 |
+
num_inference_steps=steps,
|
220 |
+
guidance_scale=cfg_scale,
|
221 |
+
width=width,
|
222 |
+
height=height,
|
223 |
+
generator=generator,
|
224 |
+
joint_attention_kwargs={"scale": lora_scale},
|
225 |
+
output_type="pil",
|
226 |
+
).images[0]
|
227 |
+
return final_image
|
228 |
+
else: # omitted
|
229 |
+
pipe_i2i.to("cuda")
|
230 |
+
pipe_i2i.vae = good_vae
|
231 |
+
image_input = load_image(image_input_path)
|
232 |
+
if controlnet_union is not None: controlnet_union.to("cuda")
|
233 |
+
if controlnet is not None: controlnet.to("cuda")
|
234 |
+
pipe_i2i.enable_model_cpu_offload()
|
235 |
+
progress(0, desc="Start I2I Inference with ControlNet.")
|
236 |
+
final_image = pipe_i2i(
|
237 |
+
prompt=prompt_mash,
|
238 |
+
control_image=images,
|
239 |
+
control_mode=modes,
|
240 |
+
image=image_input,
|
241 |
+
strength=image_strength,
|
242 |
+
num_inference_steps=steps,
|
243 |
+
guidance_scale=cfg_scale,
|
244 |
+
width=width,
|
245 |
+
height=height,
|
246 |
+
controlnet_conditioning_scale=scales,
|
247 |
+
generator=generator,
|
248 |
+
joint_attention_kwargs={"scale": lora_scale},
|
249 |
+
output_type="pil",
|
250 |
+
).images[0]
|
251 |
+
return final_image
|
252 |
+
except Exception as e:
|
253 |
+
print(e)
|
254 |
+
raise gr.Error(f"I2I Inference Error: {e}") from e
|
255 |
+
|
256 |
+
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
257 |
lora_scale, lora_json, cn_on, translate_on, progress=gr.Progress(track_tqdm=True)):
|
258 |
global pipe
|
259 |
if selected_index is None and not is_valid_lora(lora_json):
|
|
|
265 |
try:
|
266 |
pipe.unfuse_lora()
|
267 |
pipe.unload_lora_weights()
|
268 |
+
pipe_i2i.unfuse_lora()
|
269 |
+
pipe_i2i.unload_lora_weights()
|
270 |
except Exception as e:
|
271 |
print(e)
|
272 |
|
|
|
297 |
prompt_mash = prompt_mash
|
298 |
# Load LoRA weights
|
299 |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
300 |
+
if(image_input is not None):
|
301 |
+
if "weights" in selected_lora:
|
302 |
+
pipe_i2i.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
303 |
+
else:
|
304 |
+
pipe_i2i.load_lora_weights(lora_path)
|
305 |
else:
|
306 |
+
if "weights" in selected_lora:
|
307 |
+
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
308 |
+
else:
|
309 |
+
pipe.load_lora_weights(lora_path)
|
310 |
|
311 |
# Set random seed for reproducibility
|
312 |
with calculateDuration("Randomizing seed"):
|
|
|
314 |
seed = random.randint(0, MAX_SEED)
|
315 |
|
316 |
progress(0, desc="Running Inference.")
|
317 |
+
if(image_input is not None):
|
318 |
+
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed, cn_on, progress)
|
319 |
+
yield save_image(final_image, None, last_model, prompt_mash, height, width, steps, cfg_scale, seed), seed, gr.update(visible=False)
|
320 |
+
else:
|
321 |
+
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress)
|
322 |
+
# Consume the generator to get the final image
|
323 |
+
final_image = None
|
324 |
+
step_counter = 0
|
325 |
+
for image in image_generator:
|
326 |
+
step_counter+=1
|
327 |
+
final_image = image
|
328 |
+
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
329 |
+
yield image, seed, gr.update(value=progress_bar, visible=True)
|
330 |
+
yield save_image(final_image, None, last_model, prompt_mash, height, width, steps, cfg_scale, seed), seed, gr.update(value=progress_bar, visible=False)
|
331 |
|
332 |
def get_huggingface_safetensors(link):
|
333 |
split_link = link.split("/")
|
|
|
473 |
model_info = gr.Markdown(elem_classes="info")
|
474 |
with gr.Row():
|
475 |
with gr.Accordion("Advanced Settings", open=False):
|
476 |
+
with gr.Row():
|
477 |
+
input_image = gr.Image(label="Input image", type="filepath", height=256, sources=["upload", "clipboard"], show_share_button=False)
|
478 |
+
with gr.Column():
|
479 |
+
image_strength = gr.Slider(label="Image Strength", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
|
480 |
+
input_image_preprocess = gr.Checkbox(True, label="Preprocess Input image")
|
481 |
with gr.Column():
|
482 |
with gr.Row():
|
483 |
+
lora_scale = gr.Slider(label="LoRA Scale", minimum=-3, maximum=3, step=0.01, value=0.95)
|
484 |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
485 |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
486 |
with gr.Row():
|
|
|
489 |
with gr.Row():
|
490 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
491 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
492 |
+
disable_model_cache = gr.Checkbox(False, label="Disable model caching")
|
493 |
with gr.Accordion("External LoRA", open=True):
|
494 |
with gr.Column():
|
495 |
lora_repo_json = gr.JSON(value=[{}] * num_loras, visible=False)
|
|
|
573 |
gr.on(
|
574 |
triggers=[generate_button.click, prompt.submit],
|
575 |
fn=change_base_model,
|
576 |
+
inputs=[model_name, cn_on, disable_model_cache],
|
577 |
outputs=[result],
|
578 |
queue=True,
|
579 |
show_api=False,
|
580 |
trigger_mode="once",
|
581 |
).success(
|
582 |
fn=run_lora,
|
583 |
+
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
584 |
lora_scale, lora_repo_json, cn_on, auto_trans],
|
585 |
outputs=[result, seed, progress_bar],
|
586 |
queue=True,
|
587 |
show_api=True,
|
588 |
)
|
589 |
|
590 |
+
input_image.upload(preprocess_i2i_image, [input_image, input_image_preprocess, height, width], [input_image], queue=False, show_api=False)
|
591 |
deselect_lora_button.click(deselect_lora, None, [prompt, selected_info, selected_index, width, height], queue=False, show_api=False)
|
592 |
gr.on(
|
593 |
triggers=[model_name.change, cn_on.change],
|
|
|
597 |
queue=False,
|
598 |
show_api=False,
|
599 |
trigger_mode="once",
|
600 |
+
).then(change_base_model, [model_name, cn_on, disable_model_cache], [result], queue=True, show_api=False)
|
601 |
prompt_enhance.click(enhance_prompt, [prompt], [prompt], queue=False, show_api=False)
|
602 |
|
603 |
gr.on(
|
loras.json
CHANGED
@@ -48,12 +48,30 @@
|
|
48 |
"trigger_word": "in the style of TOK a trtcrd, tarot style",
|
49 |
"aspect": "portrait"
|
50 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
{
|
52 |
"image": "https://huggingface.co/alvdansen/softpasty-flux-dev/resolve/main/images/ComfyUI_00814_%20(2).png",
|
53 |
"title": "SoftPasty",
|
54 |
"repo": "alvdansen/softpasty-flux-dev",
|
55 |
"trigger_word": "araminta_illus illustration style"
|
56 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
{
|
58 |
"image": "https://huggingface.co/AIWarper/RubberCore1920sCartoonStyle/resolve/main/images/Rub_00006_.png",
|
59 |
"title": "1920s cartoon",
|
@@ -61,6 +79,13 @@
|
|
61 |
"trigger_word": "RU883R style",
|
62 |
"trigger_position": "prepend"
|
63 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
{
|
65 |
"image": "https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/picture-6-rev1.png?raw=true",
|
66 |
"title": "flux-Realism",
|
@@ -81,6 +106,13 @@
|
|
81 |
"trigger_word": "mgwr/cine",
|
82 |
"trigger_position": "prepend"
|
83 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
{
|
85 |
"image": "https://huggingface.co/nerijs/animation2k-flux/resolve/main/images/Q8-oVxNnXvZ9HNrgbNpGw_02762aaaba3b47859ee5fe9403a371e3.png",
|
86 |
"title": "animation2k",
|
@@ -100,12 +132,6 @@
|
|
100 |
"trigger_word": "ps1 game screenshot,",
|
101 |
"trigger_position": "prepend"
|
102 |
},
|
103 |
-
{
|
104 |
-
"image": "https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-blended-realistic-illustration/resolve/main/images/example3.png",
|
105 |
-
"title": "Blended Realistic Illustration",
|
106 |
-
"repo": "Shakker-Labs/FLUX.1-dev-LoRA-blended-realistic-illustration",
|
107 |
-
"trigger_word": "artistic style blends reality and illustration elements"
|
108 |
-
},
|
109 |
{
|
110 |
"image": "https://huggingface.co/alvdansen/flux-koda/resolve/main/images/ComfyUI_00566_%20(2).png",
|
111 |
"title": "flux koda",
|
@@ -119,7 +145,7 @@
|
|
119 |
"trigger_word": ""
|
120 |
},
|
121 |
{
|
122 |
-
"image": "https://
|
123 |
"title": "Half Illustration",
|
124 |
"repo": "davisbro/half_illustration",
|
125 |
"trigger_word": "in the style of TOK"
|
@@ -171,8 +197,7 @@
|
|
171 |
{
|
172 |
"image": "https://huggingface.co/kudzueye/Boreal/resolve/main/images/ComfyUI_00845_.png",
|
173 |
"title": "Boreal",
|
174 |
-
"repo": "kudzueye/
|
175 |
-
"weights": "boreal-flux-dev-lora-v04_1000_steps.safetensors",
|
176 |
"trigger_word": "phone photo"
|
177 |
},
|
178 |
{
|
|
|
48 |
"trigger_word": "in the style of TOK a trtcrd, tarot style",
|
49 |
"aspect": "portrait"
|
50 |
},
|
51 |
+
{
|
52 |
+
"repo": "alvdansen/pola-photo-flux",
|
53 |
+
"image": "https://huggingface.co/alvdansen/pola-photo-flux/resolve/main/images/out-2%20(83).webp",
|
54 |
+
"trigger_word": ", polaroid style",
|
55 |
+
"title": "Polaroid Style"
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"image": "https://huggingface.co/dvyio/flux-lora-the-sims/resolve/main/images/dunBAVBsALOepaE_dsWFI_6b0fef6b0fc4472aa07d00edea7c75b3.jpg",
|
59 |
+
"repo": "dvyio/flux-lora-the-sims",
|
60 |
+
"trigger_word": ", video game screenshot in the style of THSMS",
|
61 |
+
"title": "The Sims style"
|
62 |
+
},
|
63 |
{
|
64 |
"image": "https://huggingface.co/alvdansen/softpasty-flux-dev/resolve/main/images/ComfyUI_00814_%20(2).png",
|
65 |
"title": "SoftPasty",
|
66 |
"repo": "alvdansen/softpasty-flux-dev",
|
67 |
"trigger_word": "araminta_illus illustration style"
|
68 |
},
|
69 |
+
{
|
70 |
+
"image": "https://huggingface.co/dvyio/flux-lora-film-noir/resolve/main/images/S8iWMa0GamEcFkanHHmI8_a232d8b83bb043808742d661dac257f7.jpg",
|
71 |
+
"title": "Film Noir",
|
72 |
+
"repo": "dvyio/flux-lora-film-noir",
|
73 |
+
"trigger_word": "in the style of FLMNR"
|
74 |
+
},
|
75 |
{
|
76 |
"image": "https://huggingface.co/AIWarper/RubberCore1920sCartoonStyle/resolve/main/images/Rub_00006_.png",
|
77 |
"title": "1920s cartoon",
|
|
|
79 |
"trigger_word": "RU883R style",
|
80 |
"trigger_position": "prepend"
|
81 |
},
|
82 |
+
{
|
83 |
+
"image": "https://huggingface.co/Norod78/JojosoStyle-flux-lora/resolve/main/samples/1725244218477__000004255_1.jpg",
|
84 |
+
"title": "JoJo Style",
|
85 |
+
"repo": "Norod78/JojosoStyle-flux-lora",
|
86 |
+
"trigger_word": "JojosoStyle",
|
87 |
+
"trigger_position": "prepend"
|
88 |
+
},
|
89 |
{
|
90 |
"image": "https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/picture-6-rev1.png?raw=true",
|
91 |
"title": "flux-Realism",
|
|
|
106 |
"trigger_word": "mgwr/cine",
|
107 |
"trigger_position": "prepend"
|
108 |
},
|
109 |
+
{
|
110 |
+
"image": "https://huggingface.co/sWizad/pokemon-trainer-sprites-pixelart-flux/resolve/main/26578915.jpeg",
|
111 |
+
"repo": "sWizad/pokemon-trainer-sprites-pixelart-flux",
|
112 |
+
"title": "Pokemon Trainer Sprites",
|
113 |
+
"trigger_word": "white background, a pixel image of",
|
114 |
+
"trigger_position": "prepend"
|
115 |
+
},
|
116 |
{
|
117 |
"image": "https://huggingface.co/nerijs/animation2k-flux/resolve/main/images/Q8-oVxNnXvZ9HNrgbNpGw_02762aaaba3b47859ee5fe9403a371e3.png",
|
118 |
"title": "animation2k",
|
|
|
132 |
"trigger_word": "ps1 game screenshot,",
|
133 |
"trigger_position": "prepend"
|
134 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
{
|
136 |
"image": "https://huggingface.co/alvdansen/flux-koda/resolve/main/images/ComfyUI_00566_%20(2).png",
|
137 |
"title": "flux koda",
|
|
|
145 |
"trigger_word": ""
|
146 |
},
|
147 |
{
|
148 |
+
"image": "https://huggingface.co/davisbro/half_illustration/resolve/main/images/example3.webp",
|
149 |
"title": "Half Illustration",
|
150 |
"repo": "davisbro/half_illustration",
|
151 |
"trigger_word": "in the style of TOK"
|
|
|
197 |
{
|
198 |
"image": "https://huggingface.co/kudzueye/Boreal/resolve/main/images/ComfyUI_00845_.png",
|
199 |
"title": "Boreal",
|
200 |
+
"repo": "kudzueye/boreal-flux-dev-v2",
|
|
|
201 |
"trigger_word": "phone photo"
|
202 |
},
|
203 |
{
|
mod.py
CHANGED
@@ -239,6 +239,18 @@ def set_control_union_image(i: int, mode: str, image: Image.Image | None, height
|
|
239 |
return control_images[i]
|
240 |
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
def compose_lora_json(lorajson: list[dict], i: int, name: str, scale: float, filename: str, trigger: str):
|
243 |
lorajson[i]["name"] = str(name) if name != "None" else ""
|
244 |
lorajson[i]["scale"] = float(scale)
|
|
|
239 |
return control_images[i]
|
240 |
|
241 |
|
242 |
+
def preprocess_i2i_image(image_path: str, is_preprocess: bool, height: int, width: int):
|
243 |
+
try:
|
244 |
+
if not is_preprocess: return image_path
|
245 |
+
image_resolution = max(width, height)
|
246 |
+
image = Image.open(image_path)
|
247 |
+
image_resized = resize_image(expand2square(image.convert("RGB")), image_resolution, image_resolution, False)
|
248 |
+
image_resized.save(image_path)
|
249 |
+
except Exception as e:
|
250 |
+
raise gr.Error(f"Error: {e}")
|
251 |
+
return image_path
|
252 |
+
|
253 |
+
|
254 |
def compose_lora_json(lorajson: list[dict], i: int, name: str, scale: float, filename: str, trigger: str):
|
255 |
lorajson[i]["name"] = str(name) if name != "None" else ""
|
256 |
lorajson[i]["scale"] = float(scale)
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
spaces
|
2 |
torch
|
3 |
-
git+https://github.com/huggingface/diffusers
|
4 |
transformers
|
5 |
peft
|
6 |
sentencepiece
|
|
|
1 |
spaces
|
2 |
torch
|
3 |
+
git+https://github.com/huggingface/diffusers@aa73072f1f7014635e3de916cbcf47858f4c37a0
|
4 |
transformers
|
5 |
peft
|
6 |
sentencepiece
|