File size: 4,135 Bytes
09fa6ac
 
 
 
cd39c08
09fa6ac
 
 
 
 
 
 
 
 
cd39c08
 
 
 
 
 
 
09fa6ac
 
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09fa6ac
 
 
 
 
 
 
 
 
cd39c08
09fa6ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import gradio as gr
import torch
import spaces
from diffusers import DiffusionPipeline
from pathlib import Path
import gc
import subprocess


subprocess.run('pip cache purge', shell=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.set_grad_enabled(False)


models = [
    "camenduru/FLUX.1-dev-diffusers",
    "black-forest-labs/FLUX.1-schnell",
    "sayakpaul/FLUX.1-merged",
    "John6666/blue-pencil-flux1-v001-fp8-flux",
    "John6666/fluxunchained-artfulnsfw-fut516xfp8e4m3fnv11-fp8-flux",
    "John6666/nepotism-fuxdevschnell-v3aio-flux"
]


num_loras = 3


def is_repo_name(s):
    import re
    return re.fullmatch(r'^[^/,\s]+?/[^/,\s]+?$', s)


def is_repo_exists(repo_id):
    from huggingface_hub import HfApi
    api = HfApi()
    try:
        if api.repo_exists(repo_id=repo_id): return True
        else: return False
    except Exception as e:
        print(f"Error: Failed to connect {repo_id}. ")
        return True # for safe


def clear_cache():
    torch.cuda.empty_cache()
    gc.collect()


def get_repo_safetensors(repo_id: str):
    from huggingface_hub import HfApi
    api = HfApi()
    try:
        if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(value="", choices=[])
        files = api.list_repo_files(repo_id=repo_id)
    except Exception as e:
        print(f"Error: Failed to get {repo_id}'s info. ")
        print(e)
        return gr.update(choices=[])
    files = [f for f in files if f.endswith(".safetensors")]
    if len(files) == 0: return gr.update(value="", choices=[])
    else: return gr.update(value=files[0], choices=files)


def change_base_model(repo_id: str):
    from huggingface_hub import HfApi
    global pipe
    api = HfApi()
    try:
        if " " in repo_id or not api.repo_exists(repo_id): return
        clear_cache()
        pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
    except Exception as e:
        print(e)


def compose_lora_json(lorajson: list[dict], i: int, name: str, scale: float, filename: str, trigger: str):
    lorajson[i]["name"] = str(name) if name != "None" else ""
    lorajson[i]["scale"] = float(scale)
    lorajson[i]["filename"] = str(filename)
    lorajson[i]["trigger"] = str(trigger)
    return lorajson


def is_valid_lora(lorajson: list[dict]):
    valid = False
    for d in lorajson:
        if "name" in d.keys() and d["name"] and d["name"] != "None": valid = True
    return valid


def get_trigger_word(lorajson: list[dict]):
    trigger = ""
    for d in lorajson:
        if "name" in d.keys() and d["name"] and d["name"] != "None" and d["trigger"]:
            trigger += ", " + d["trigger"]
    return trigger


# https://github.com/huggingface/diffusers/issues/4919
def fuse_loras(pipe, lorajson: list[dict]):
    if not lorajson or not isinstance(lorajson, list): return
    a_list = []
    w_list = []
    for d in lorajson:
        if not d or not isinstance(d, dict) or not d["name"] or d["name"] == "None": continue
        k = d["name"]
        if is_repo_name(k) and is_repo_exists(k):
            a_name = Path(k).stem
            pipe.load_lora_weights(k, weight_name=d["filename"], adapter_name = a_name)
        elif not Path(k).exists():
            print(f"LoRA not found: {k}")
            continue
        else:
            w_name = Path(k).name
            a_name = Path(k).stem
            pipe.load_lora_weights(k, weight_name = w_name, adapter_name = a_name)
        a_list.append(a_name)
        w_list.append(d["scale"])
    if not a_list: return
    pipe.set_adapters(a_list, adapter_weights=w_list)
    pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
    #pipe.unload_lora_weights()


fuse_loras.zerogpu = True


def description_ui():
    gr.Markdown(
        """

- Mod of [multimodalart/flux-lora-the-explorer](https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer),

 [gokaygokay/FLUX-Prompt-Generator](https://huggingface.co/spaces/gokaygokay/FLUX-Prompt-Generator).

"""
    )