Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,459 Bytes
d34ac72 64f7574 d34ac72 b397bfd d34ac72 b397bfd d34ac72 b397bfd d34ac72 d6802e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline
import copy
import random
import time
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
models = ["camenduru/FLUX.1-dev-diffusers", "black-forest-labs/FLUX.1-schnell",
"sayakpaul/FLUX.1-merged", "John6666/blue-pencil-flux1-v001-fp8-flux"]
base_model = models[0]
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
MAX_SEED = 2**32-1
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, width, height):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)
@spaces.GPU(duration=70)
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
image = pipe(
prompt=f"{prompt} {trigger_word}",
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
return image
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
lora_scale, lora_repo, lora_weights, lora_trigger, progress=gr.Progress(track_tqdm=True)):
#if selected_index is None and not lora_repo:
# raise gr.Error("You must select a LoRA before proceeding.")
if selected_index is not None and not lora_repo:
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
else: # override
selected_lora = loras[0]
lora_path = lora_repo
trigger_word = lora_trigger
# Load LoRA weights
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
if selected_index is None and not lora_repo: # override
pass
elif lora_weights: # override
pipe.load_lora_weights(lora_path, weight_name=lora_weights)
elif "weights" in selected_lora:
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
else:
pipe.load_lora_weights(lora_path)
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
pipe.to("cpu")
if selected_index is not None or lora_repo: pipe.unload_lora_weights()
return image, seed
run_lora.zerogpu = True
def get_repo_safetensors(repo_id: str):
from huggingface_hub import HfApi
api = HfApi()
try:
if " " in repo_id or not api.repo_exists(repo_id): return gr.update(value="", choices=[])
files = api.list_repo_files(repo_id=repo_id)
except Exception as e:
print(f"Error: Failed to get {repo_id}'s info. ")
print(e)
return gr.update(choices=[])
files = [f for f in files if f.endswith(".safetensors")]
if len(files) == 0: return gr.update(value="", choices=[])
else: return gr.update(value=files[0], choices=files)
def change_base_model(repo_id: str):
from huggingface_hub import HfApi
global pipe
api = HfApi()
try:
if " " in repo_id or not api.repo_exists(repo_id): return
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
except Exception as e:
print(e)
css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
title = gr.HTML(
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> FLUX LoRA the Explorer</h1>""",
elem_id="title",
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column(scale=3):
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=3,
elem_id="gallery"
)
with gr.Column(scale=4):
result = gr.Image(label="Generated Image")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
with gr.Row():
lora_repo = gr.Dropdown(label="LoRA Repo", choices=[], info="Input LoRA Repo ID", value="", allow_custom_value=True)
lora_weights = gr.Dropdown(label="LoRA Filename", choices=[], info="Optional", value="", allow_custom_value=True)
lora_trigger = gr.Textbox(label="LoRA Trigger Prompt", value="")
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.95)
with gr.Row():
model_name = gr.Dropdown(label="Base Model", choices=models, value=models[0], allow_custom_value=True)
gallery.select(
update_selection,
inputs=[width, height],
outputs=[prompt, selected_info, selected_index, width, height]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
lora_scale, lora_repo, lora_weights, lora_trigger],
outputs=[result, seed]
)
lora_repo.change(get_repo_safetensors, [lora_repo], [lora_weights])
model_name.change(change_base_model, [model_name], None)
app.queue()
app.launch() |