File size: 9,586 Bytes
a009ad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import gradio as gr
import asyncio
from threading import RLock
from pathlib import Path
import os
from typing import Union


HF_TOKEN = os.getenv("HF_TOKEN", None)
server_timeout = 600
inference_timeout = 600


lock = RLock()
loaded_models = {}


def rename_image(image_path: Union[str, None], model_name: str, save_path: Union[str, None] = None):
    import shutil
    from datetime import datetime, timezone, timedelta
    if image_path is None: return None
    dt_now = datetime.now(timezone(timedelta(hours=9)))
    filename = f"{model_name.split('/')[-1]}_{dt_now.strftime('%Y%m%d_%H%M%S')}.png"
    try:
        if Path(image_path).exists():
            png_path = "image.png"
            if str(Path(image_path).resolve()) != str(Path(png_path).resolve()): shutil.copy(image_path, png_path)
            if save_path is not None:
                new_path = str(Path(png_path).resolve().rename(Path(save_path).resolve()))
            else:
                new_path = str(Path(png_path).resolve().rename(Path(filename).resolve()))
            return new_path
        else:
            return None
    except Exception as e:
        print(e)
        return None


# https://github.com/gradio-app/gradio/blob/main/gradio/external.py
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
from typing import Literal
def load_from_model(model_name: str, hf_token: Union[str, Literal[False], None] = None):
    import httpx
    import huggingface_hub
    from gradio.exceptions import ModelNotFoundError, TooManyRequestsError
    model_url = f"https://huggingface.co/{model_name}"
    api_url = f"https://api-inference.huggingface.co/models/{model_name}"
    print(f"Fetching model from: {model_url}")

    headers = ({} if hf_token in [False, None] else {"Authorization": f"Bearer {hf_token}"})
    response = httpx.request("GET", api_url, headers=headers)
    if response.status_code != 200:
        raise ModelNotFoundError(
            f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter."
        )
    p = response.json().get("pipeline_tag")
    if p != "text-to-image": raise ModelNotFoundError(f"This model isn't for text-to-image or unsupported: {model_name}.")
    headers["X-Wait-For-Model"] = "true"
    kwargs = {}
    if hf_token is not None: kwargs["token"] = hf_token
    client = huggingface_hub.InferenceClient(model=model_name, headers=headers, timeout=server_timeout, **kwargs)
    inputs = gr.components.Textbox(label="Input")
    outputs = gr.components.Image(label="Output")
    fn = client.text_to_image

    def query_huggingface_inference_endpoints(*data, **kwargs):
        try:
            data = fn(*data, **kwargs)  # type: ignore
        except huggingface_hub.utils.HfHubHTTPError as e:
            print(e)
            if "429" in str(e): raise TooManyRequestsError() from e
        except Exception as e:
            print(e)
            raise Exception() from e
        return data

    interface_info = {
        "fn": query_huggingface_inference_endpoints,
        "inputs": inputs,
        "outputs": outputs,
        "title": model_name,
    }
    return gr.Interface(**interface_info)


def load_model(model_name: str):
    global loaded_models
    global model_info_dict
    if model_name in loaded_models.keys(): return loaded_models[model_name]
    try:
        loaded_models[model_name] = load_from_model(model_name, hf_token=HF_TOKEN)
        print(f"Loaded: {model_name}")
    except Exception as e:
        if model_name in loaded_models.keys(): del loaded_models[model_name]
        print(f"Failed to load: {model_name}")
        print(e)
        return None
    return loaded_models[model_name]


def load_models(models: list):
    for model in models:
        load_model(model)


def warm_model(model_name: str):
    model = load_model(model_name)
    if model:
        try:
            print(f"Warming model: {model_name}")
            infer_body(model, model_name, " ")
        except Exception as e:
            print(e)


def warm_models(models: list[str]):
    for model in models:
        asyncio.new_event_loop().run_in_executor(None, warm_model, model)


# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
def infer_body(client: Union[gr.Interface, object], model_str: str, prompt: str, neg_prompt: str = "",

               height: int = 0, width: int = 0, steps: int = 0, cfg: int = 0, seed: int = -1):
    png_path = "image.png"
    kwargs = {}
    if height > 0: kwargs["height"] = height
    if width > 0: kwargs["width"] = width
    if steps > 0: kwargs["num_inference_steps"] = steps
    if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
    if seed == -1: kwargs["seed"] = randomize_seed()
    else: kwargs["seed"] = seed
    try:
        if isinstance(client, gr.Interface): image = client.fn(prompt=prompt, negative_prompt=neg_prompt, **kwargs)
        else: return None
        if isinstance(image, tuple): return None
        return save_image(image, png_path, model_str, prompt, neg_prompt, height, width, steps, cfg, seed)
    except Exception as e:
        print(e)
        raise Exception(e) from e


async def infer(model_name: str, prompt: str, neg_prompt: str ="", height: int = 0, width: int = 0,

               steps: int = 0, cfg: int = 0, seed: int = -1,

               save_path: str | None = None, timeout: float = inference_timeout):
    model = load_model(model_name)
    if not model: return None
    task = asyncio.create_task(asyncio.to_thread(infer_body, model, model_name, prompt, neg_prompt,
                                                 height, width, steps, cfg, seed))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except asyncio.TimeoutError as e:
        print(e)
        print(f"Task timed out: {model_name}")
        if not task.done(): task.cancel()
        result = None
        raise Exception(f"Task timed out: {model_name}") from e
    except Exception as e:
        print(e)
        if not task.done(): task.cancel()
        result = None
        raise Exception(e) from e
    if task.done() and result is not None:
        with lock:
            image = rename_image(result, model_name, save_path)
        return image
    return None


def save_image(image, savefile, modelname, prompt, nprompt, height=0, width=0, steps=0, cfg=0, seed=-1):
    from PIL import Image, PngImagePlugin
    import json
    try:
        metadata = {"prompt": prompt, "negative_prompt": nprompt, "Model": {"Model": modelname.split("/")[-1]}}
        if steps > 0: metadata["num_inference_steps"] = steps
        if cfg > 0: metadata["guidance_scale"] = cfg
        if seed != -1: metadata["seed"] = seed
        if width > 0 and height > 0: metadata["resolution"] = f"{width} x {height}"
        metadata_str = json.dumps(metadata)
        info = PngImagePlugin.PngInfo()
        info.add_text("metadata", metadata_str)
        image.save(savefile, "PNG", pnginfo=info)
        return str(Path(savefile).resolve())
    except Exception as e:
        print(f"Failed to save image file: {e}")
        raise Exception(f"Failed to save image file:") from e


def randomize_seed():
    from random import seed, randint
    MAX_SEED = 2**32-1
    seed()
    rseed = randint(0, MAX_SEED)
    return rseed


def gen_image(model_name: str, prompt: str, neg_prompt: str = "", height: int = 0, width: int = 0,

              steps: int = 0, cfg: int = 0, seed: int = -1):
    if model_name in ["NA", ""]: return gr.update()
    try:
        loop = asyncio.get_running_loop()
    except Exception:
        loop = asyncio.new_event_loop()
    try:
        result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
                                               steps, cfg, seed, None, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"Task aborted: {model_name}, Error: {e}")
        result = None
        raise gr.Error(f"Task aborted: {model_name}, Error: {e}")
    finally:
        loop.close()
    return result


def generate_image_hf(model_name: str, prompt: str, negative_prompt: str, use_defaults: bool, resolution: str,

                      guidance_scale: float, num_inference_steps: int, seed: int, randomize_seed: bool, progress=gr.Progress()):

    if randomize_seed: seed = -1
    if use_defaults:
        prompt = f"{prompt}, best quality, amazing quality, very aesthetic"
        negative_prompt = f"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], {negative_prompt}"
    
    width, height = map(int, resolution.split('x'))
    image = gen_image(model_name, prompt, negative_prompt, height, width, num_inference_steps, guidance_scale)

    metadata_text = f"{prompt}\nNegative prompt: {negative_prompt}\nSteps: {num_inference_steps}, Sampler: Euler a, Size: {width}x{height}, Seed: {seed}, CFG scale: {guidance_scale}"

    return image, seed, metadata_text