File size: 25,826 Bytes
dc71cc5
 
 
 
 
 
 
 
 
 
 
c5a2b9e
dc71cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a2b9e
 
 
 
dc71cc5
 
 
 
c5a2b9e
dc71cc5
 
 
 
 
 
 
 
 
 
c5a2b9e
dc71cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a2b9e
dc71cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a2b9e
dc71cc5
 
 
 
 
 
 
 
 
 
c5a2b9e
 
 
dc71cc5
 
 
 
c5a2b9e
 
 
dc71cc5
 
 
 
 
 
 
 
 
c5a2b9e
dc71cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a2b9e
dc71cc5
 
c5a2b9e
 
 
 
 
dc71cc5
 
 
 
 
 
 
 
 
 
 
c5a2b9e
dc71cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a2b9e
dc71cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a2b9e
dc71cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a2b9e
dc71cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a2b9e
dc71cc5
c5a2b9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
"""This module should not be used directly as its API is subject to change. Instead,
use the `gr.Blocks.load()` or `gr.load()` functions."""

from __future__ import annotations

import json
import os
import re
import tempfile
import warnings
from pathlib import Path
from typing import TYPE_CHECKING, Callable, Literal

import httpx
import huggingface_hub
from gradio_client import Client
from gradio_client.client import Endpoint
from gradio_client.documentation import document
from packaging import version

import gradio
from gradio import components, external_utils, utils
from gradio.context import Context
from gradio.exceptions import (
    GradioVersionIncompatibleError,
    ModelNotFoundError,
    TooManyRequestsError,
)
from gradio.processing_utils import save_base64_to_cache, to_binary

if TYPE_CHECKING:
    from gradio.blocks import Blocks
    from gradio.interface import Interface


HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
server_timeout = 600


@document()
def load(
    name: str,
    src: str | None = None,
    hf_token: str | Literal[False] | None = None,
    alias: str | None = None,
    **kwargs,
) -> Blocks:
    """
    Constructs a demo from a Hugging Face repo. Can accept model repos (if src is "models") or Space repos (if src is "spaces"). The input
    and output components are automatically loaded from the repo. Note that if a Space is loaded, certain high-level attributes of the Blocks (e.g.
    custom `css`, `js`, and `head` attributes) will not be loaded.
    Parameters:
        name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
        src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
        hf_token: optional access token for loading private Hugging Face Hub models or spaces. Will default to the locally saved token if not provided. Pass `token=False` if you don't want to send your token to the server. Find your token here: https://huggingface.co/settings/tokens.  Warning: only provide a token if you are loading a trusted private Space as it can be read by the Space you are loading.
        alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
    Returns:
        a Gradio Blocks object for the given model
    Example:
        import gradio as gr
        demo = gr.load("gradio/question-answering", src="spaces")
        demo.launch()
    """
    return load_blocks_from_repo(
        name=name, src=src, hf_token=hf_token, alias=alias, **kwargs
    )


def load_blocks_from_repo(
    name: str,
    src: str | None = None,
    hf_token: str | Literal[False] | None = None,
    alias: str | None = None,
    **kwargs,
) -> Blocks:
    """Creates and returns a Blocks instance from a Hugging Face model or Space repo."""
    if src is None:
        # Separate the repo type (e.g. "model") from repo name (e.g. "google/vit-base-patch16-224")
        tokens = name.split("/")
        if len(tokens) <= 1:
            raise ValueError(
                "Either `src` parameter must be provided, or `name` must be formatted as {src}/{repo name}"
            )
        src = tokens[0]
        name = "/".join(tokens[1:])

    factory_methods: dict[str, Callable] = {
        # for each repo type, we have a method that returns the Interface given the model name & optionally an hf_token
        "huggingface": from_model,
        "models": from_model,
        "spaces": from_spaces,
    }
    if src.lower() not in factory_methods:
        raise ValueError(f"parameter: src must be one of {factory_methods.keys()}")

    if hf_token is not None and hf_token is not False:
        if Context.hf_token is not None and Context.hf_token != hf_token:
            warnings.warn(
                """You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior."""
            )
        Context.hf_token = hf_token

    blocks: gradio.Blocks = factory_methods[src](name, hf_token, alias, **kwargs)
    return blocks


def from_model(
    model_name: str, hf_token: str | Literal[False] | None, alias: str | None, **kwargs
):
    model_url = f"https://huggingface.co/{model_name}"
    api_url = f"https://api-inference.huggingface.co/models/{model_name}"
    print(f"Fetching model from: {model_url}")

    headers = (
        {} if hf_token in [False, None] else {"Authorization": f"Bearer {hf_token}"}
    )
    response = httpx.request("GET", api_url, headers=headers)
    if response.status_code != 200:
        raise ModelNotFoundError(
            f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter."
        )
    p = response.json().get("pipeline_tag")

    headers["X-Wait-For-Model"] = "true"
    client = huggingface_hub.InferenceClient(
        model=model_name, headers=headers, token=hf_token, timeout=server_timeout,
    )

    # For tasks that are not yet supported by the InferenceClient
    GRADIO_CACHE = os.environ.get("GRADIO_TEMP_DIR") or str(  # noqa: N806
        Path(tempfile.gettempdir()) / "gradio"
    )

    def custom_post_binary(data):
        data = to_binary({"path": data})
        response = httpx.request("POST", api_url, headers=headers, content=data)
        return save_base64_to_cache(
            external_utils.encode_to_base64(response), cache_dir=GRADIO_CACHE
        )

    preprocess = None
    postprocess = None
    examples = None

    # example model: ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition
    if p == "audio-classification":
        inputs = components.Audio(type="filepath", label="Input")
        outputs = components.Label(label="Class")
        postprocess = external_utils.postprocess_label
        examples = [
            "https://gradio-builds.s3.amazonaws.com/demo-files/audio_sample.wav"
        ]
        fn = client.audio_classification
    # example model: facebook/xm_transformer_sm_all-en
    elif p == "audio-to-audio":
        inputs = components.Audio(type="filepath", label="Input")
        outputs = components.Audio(label="Output")
        examples = [
            "https://gradio-builds.s3.amazonaws.com/demo-files/audio_sample.wav"
        ]
        fn = custom_post_binary
    # example model: facebook/wav2vec2-base-960h
    elif p == "automatic-speech-recognition":
        inputs = components.Audio(type="filepath", label="Input")
        outputs = components.Textbox(label="Output")
        examples = [
            "https://gradio-builds.s3.amazonaws.com/demo-files/audio_sample.wav"
        ]
        fn = client.automatic_speech_recognition
    # example model: microsoft/DialoGPT-medium
    elif p == "conversational":
        inputs = [
            components.Textbox(render=False),
            components.State(render=False),
        ]
        outputs = [
            components.Chatbot(render=False),
            components.State(render=False),
        ]
        examples = [["Hello World"]]
        preprocess = external_utils.chatbot_preprocess
        postprocess = external_utils.chatbot_postprocess
        fn = client.conversational
    # example model: julien-c/distilbert-feature-extraction
    elif p == "feature-extraction":
        inputs = components.Textbox(label="Input")
        outputs = components.Dataframe(label="Output")
        fn = client.feature_extraction
        postprocess = utils.resolve_singleton
    # example model: distilbert/distilbert-base-uncased
    elif p == "fill-mask":
        inputs = components.Textbox(label="Input")
        outputs = components.Label(label="Classification")
        examples = [
            "Hugging Face is the AI community, working together, to [MASK] the future."
        ]
        postprocess = external_utils.postprocess_mask_tokens
        fn = client.fill_mask
    # Example: google/vit-base-patch16-224
    elif p == "image-classification":
        inputs = components.Image(type="filepath", label="Input Image")
        outputs = components.Label(label="Classification")
        postprocess = external_utils.postprocess_label
        examples = ["https://gradio-builds.s3.amazonaws.com/demo-files/cheetah-002.jpg"]
        fn = client.image_classification
    # Example: deepset/xlm-roberta-base-squad2
    elif p == "question-answering":
        inputs = [
            components.Textbox(label="Question"),
            components.Textbox(lines=7, label="Context"),
        ]
        outputs = [
            components.Textbox(label="Answer"),
            components.Label(label="Score"),
        ]
        examples = [
            [
                "What entity was responsible for the Apollo program?",
                "The Apollo program, also known as Project Apollo, was the third United States human spaceflight"
                " program carried out by the National Aeronautics and Space Administration (NASA), which accomplished"
                " landing the first humans on the Moon from 1969 to 1972.",
            ]
        ]
        postprocess = external_utils.postprocess_question_answering
        fn = client.question_answering
    # Example: facebook/bart-large-cnn
    elif p == "summarization":
        inputs = components.Textbox(label="Input")
        outputs = components.Textbox(label="Summary")
        examples = [
            [
                "The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct."
            ]
        ]
        fn = client.summarization
    # Example: distilbert-base-uncased-finetuned-sst-2-english
    elif p == "text-classification":
        inputs = components.Textbox(label="Input")
        outputs = components.Label(label="Classification")
        examples = ["I feel great"]
        postprocess = external_utils.postprocess_label
        fn = client.text_classification
    # Example: gpt2
    elif p == "text-generation":
        inputs = components.Textbox(label="Text")
        outputs = inputs
        examples = ["Once upon a time"]
        fn = external_utils.text_generation_wrapper(client)
    # Example: valhalla/t5-small-qa-qg-hl
    elif p == "text2text-generation":
        inputs = components.Textbox(label="Input")
        outputs = components.Textbox(label="Generated Text")
        examples = ["Translate English to Arabic: How are you?"]
        fn = client.text_generation
    # Example: Helsinki-NLP/opus-mt-en-ar
    elif p == "translation":
        inputs = components.Textbox(label="Input")
        outputs = components.Textbox(label="Translation")
        examples = ["Hello, how are you?"]
        fn = client.translation
    # Example: facebook/bart-large-mnli
    elif p == "zero-shot-classification":
        inputs = [
            components.Textbox(label="Input"),
            components.Textbox(label="Possible class names (" "comma-separated)"),
            components.Checkbox(label="Allow multiple true classes"),
        ]
        outputs = components.Label(label="Classification")
        postprocess = external_utils.postprocess_label
        examples = [["I feel great", "happy, sad", False]]
        fn = external_utils.zero_shot_classification_wrapper(client)
    # Example: sentence-transformers/distilbert-base-nli-stsb-mean-tokens
    elif p == "sentence-similarity":
        inputs = [
            components.Textbox(
                label="Source Sentence",
                placeholder="Enter an original sentence",
            ),
            components.Textbox(
                lines=7,
                placeholder="Sentences to compare to -- separate each sentence by a newline",
                label="Sentences to compare to",
            ),
        ]
        outputs = components.JSON(label="Similarity scores")
        examples = [["That is a happy person", "That person is very happy"]]
        fn = external_utils.sentence_similarity_wrapper(client)
    # Example: julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train
    elif p == "text-to-speech":
        inputs = components.Textbox(label="Input")
        outputs = components.Audio(label="Audio")
        examples = ["Hello, how are you?"]
        fn = client.text_to_speech
    # example model: osanseviero/BigGAN-deep-128
    elif p == "text-to-image":
        inputs = components.Textbox(label="Input")
        outputs = components.Image(label="Output")
        examples = ["A beautiful sunset"]
        fn = client.text_to_image
    # example model: huggingface-course/bert-finetuned-ner
    elif p == "token-classification":
        inputs = components.Textbox(label="Input")
        outputs = components.HighlightedText(label="Output")
        examples = [
            "Hugging Face is a company based in Paris and New York City that acquired Gradio in 2021."
        ]
        fn = external_utils.token_classification_wrapper(client)
    # example model: impira/layoutlm-document-qa
    elif p == "document-question-answering":
        inputs = [
            components.Image(type="filepath", label="Input Document"),
            components.Textbox(label="Question"),
        ]
        postprocess = external_utils.postprocess_label
        outputs = components.Label(label="Label")
        fn = client.document_question_answering
    # example model: dandelin/vilt-b32-finetuned-vqa
    elif p == "visual-question-answering":
        inputs = [
            components.Image(type="filepath", label="Input Image"),
            components.Textbox(label="Question"),
        ]
        outputs = components.Label(label="Label")
        postprocess = external_utils.postprocess_visual_question_answering
        examples = [
            [
                "https://gradio-builds.s3.amazonaws.com/demo-files/cheetah-002.jpg",
                "What animal is in the image?",
            ]
        ]
        fn = client.visual_question_answering
    # example model: Salesforce/blip-image-captioning-base
    elif p == "image-to-text":
        inputs = components.Image(type="filepath", label="Input Image")
        outputs = components.Textbox(label="Generated Text")
        examples = ["https://gradio-builds.s3.amazonaws.com/demo-files/cheetah-002.jpg"]
        fn = client.image_to_text
    # example model: rajistics/autotrain-Adult-934630783
    elif p in ["tabular-classification", "tabular-regression"]:
        examples = external_utils.get_tabular_examples(model_name)
        col_names, examples = external_utils.cols_to_rows(examples)  # type: ignore
        examples = [[examples]] if examples else None
        inputs = components.Dataframe(
            label="Input Rows",
            type="pandas",
            headers=col_names,
            col_count=(len(col_names), "fixed"),
            render=False,
        )
        outputs = components.Dataframe(
            label="Predictions", type="array", headers=["prediction"]
        )
        fn = external_utils.tabular_wrapper
    # example model: microsoft/table-transformer-detection
    elif p == "object-detection":
        inputs = components.Image(type="filepath", label="Input Image")
        outputs = components.AnnotatedImage(label="Annotations")
        fn = external_utils.object_detection_wrapper(client)
    # example model: stabilityai/stable-diffusion-xl-refiner-1.0
    elif p == "image-to-image":
        inputs = [
            components.Image(type="filepath", label="Input Image"),
            components.Textbox(label="Input"),
        ]
        outputs = components.Image(label="Output")
        examples = [
            [
                "https://gradio-builds.s3.amazonaws.com/demo-files/cheetah-002.jpg",
                "Photo of a cheetah with green eyes",
            ]
        ]
        fn = client.image_to_image
    else:
        raise ValueError(f"Unsupported pipeline type: {p}")

    def query_huggingface_inference_endpoints(*data, **kwargs):
        if preprocess is not None:
            data = preprocess(*data)
        try:
            data = fn(*data, **kwargs)  # type: ignore
        except huggingface_hub.utils.HfHubHTTPError as e:
            if "429" in str(e):
                raise TooManyRequestsError() from e
        if postprocess is not None:
            data = postprocess(data)  # type: ignore
        return data

    query_huggingface_inference_endpoints.__name__ = alias or model_name

    interface_info = {
        "fn": query_huggingface_inference_endpoints,
        "inputs": inputs,
        "outputs": outputs,
        "title": model_name,
        #"examples": examples,
    }

    kwargs = dict(interface_info, **kwargs)
    interface = gradio.Interface(**kwargs)
    return interface


def from_spaces(
    space_name: str, hf_token: str | None, alias: str | None, **kwargs
) -> Blocks:
    space_url = f"https://huggingface.co/spaces/{space_name}"

    print(f"Fetching Space from: {space_url}")

    headers = {}
    if hf_token not in [False, None]:
        headers["Authorization"] = f"Bearer {hf_token}"

    iframe_url = (
        httpx.get(
            f"https://huggingface.co/api/spaces/{space_name}/host", headers=headers
        )
        .json()
        .get("host")
    )

    if iframe_url is None:
        raise ValueError(
            f"Could not find Space: {space_name}. If it is a private or gated Space, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter."
        )

    r = httpx.get(iframe_url, headers=headers)

    result = re.search(
        r"window.gradio_config = (.*?);[\s]*</script>", r.text
    )  # some basic regex to extract the config
    try:
        config = json.loads(result.group(1))  # type: ignore
    except AttributeError as ae:
        raise ValueError(f"Could not load the Space: {space_name}") from ae
    if "allow_flagging" in config:  # Create an Interface for Gradio 2.x Spaces
        return from_spaces_interface(
            space_name, config, alias, hf_token, iframe_url, **kwargs
        )
    else:  # Create a Blocks for Gradio 3.x Spaces
        if kwargs:
            warnings.warn(
                "You cannot override parameters for this Space by passing in kwargs. "
                "Instead, please load the Space as a function and use it to create a "
                "Blocks or Interface locally. You may find this Guide helpful: "
                "https://gradio.app/using_blocks_like_functions/"
            )
        return from_spaces_blocks(space=space_name, hf_token=hf_token)


def from_spaces_blocks(space: str, hf_token: str | None) -> Blocks:
    client = Client(
        space,
        hf_token=hf_token,
        download_files=False,
        _skip_components=False,
    )
    # We set deserialize to False to avoid downloading output files from the server.
    # Instead, we serve them as URLs using the /proxy/ endpoint directly from the server.

    if client.app_version < version.Version("4.0.0b14"):
        raise GradioVersionIncompatibleError(
            f"Gradio version 4.x cannot load spaces with versions less than 4.x ({client.app_version})."
            "Please downgrade to version 3 to load this space."
        )

    # Use end_to_end_fn here to properly upload/download all files
    predict_fns = []
    for fn_index, endpoint in client.endpoints.items():
        if not isinstance(endpoint, Endpoint):
            raise TypeError(
                f"Expected endpoint to be an Endpoint, but got {type(endpoint)}"
            )
        helper = client.new_helper(fn_index)
        if endpoint.backend_fn:
            predict_fns.append(endpoint.make_end_to_end_fn(helper))
        else:
            predict_fns.append(None)
    return gradio.Blocks.from_config(client.config, predict_fns, client.src)  # type: ignore


def from_spaces_interface(
    model_name: str,
    config: dict,
    alias: str | None,
    hf_token: str | None,
    iframe_url: str,
    **kwargs,
) -> Interface:
    config = external_utils.streamline_spaces_interface(config)
    api_url = f"{iframe_url}/api/predict/"
    headers = {"Content-Type": "application/json"}
    if hf_token not in [False, None]:
        headers["Authorization"] = f"Bearer {hf_token}"

    # The function should call the API with preprocessed data
    def fn(*data):
        data = json.dumps({"data": data})
        response = httpx.post(api_url, headers=headers, data=data)  # type: ignore
        result = json.loads(response.content.decode("utf-8"))
        if "error" in result and "429" in result["error"]:
            raise TooManyRequestsError("Too many requests to the Hugging Face API")
        try:
            output = result["data"]
        except KeyError as ke:
            raise KeyError(
                f"Could not find 'data' key in response from external Space. Response received: {result}"
            ) from ke
        if (
            len(config["outputs"]) == 1
        ):  # if the fn is supposed to return a single value, pop it
            output = output[0]
        if (
            len(config["outputs"]) == 1 and isinstance(output, list)
        ):  # Needed to support Output.Image() returning bounding boxes as well (TODO: handle different versions of gradio since they have slightly different APIs)
            output = output[0]
        return output

    fn.__name__ = alias if (alias is not None) else model_name
    config["fn"] = fn

    kwargs = dict(config, **kwargs)
    kwargs["_api_mode"] = True
    interface = gradio.Interface(**kwargs)
    return interface


def gr_Interface_load(
    name: str,
    src: str | None = None,
    hf_token: str | None = None,
    alias: str | None = None,
    **kwargs, # ignore
) -> Blocks:
    try:
        return load_blocks_from_repo(name, src, hf_token, alias)
    except Exception as e:
        print(e)
        return gradio.Interface(lambda: None, ['text'], ['image'])


def list_uniq(l):
    return sorted(set(l), key=l.index)


def get_status(model_name: str):
    from huggingface_hub import AsyncInferenceClient
    client = AsyncInferenceClient(token=HF_TOKEN, timeout=10)
    return client.get_model_status(model_name)


def is_loadable(model_name: str, force_gpu: bool = False):
    try:
        status = get_status(model_name)
    except Exception as e:
        print(e)
        print(f"Couldn't load {model_name}.")
        return False
    gpu_state = isinstance(status.compute_type, dict) and "gpu" in status.compute_type.keys()
    if status is None or status.state not in ["Loadable", "Loaded"] or (force_gpu and not gpu_state):
        print(f"Couldn't load {model_name}. Model state:'{status.state}', GPU:{gpu_state}")
    return status is not None and status.state in ["Loadable", "Loaded"] and (not force_gpu or gpu_state)


def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
    from huggingface_hub import HfApi
    api = HfApi(token=HF_TOKEN)
    default_tags = ["diffusers"]
    if not sort: sort = "last_modified"
    limit = limit * 20 if check_status and force_gpu else limit * 5
    models = []
    try:
        model_infos = api.list_models(author=author, #task="text-to-image",
                                       tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
    except Exception as e:
        print(f"Error: Failed to list models.")
        print(e)
        return models
    for model in model_infos:
        if not model.private and not model.gated or HF_TOKEN is not None:
           loadable = is_loadable(model.id, force_gpu) if check_status else True
           if not_tag and not_tag in model.tags or not loadable: continue
           models.append(model.id)
           if len(models) == limit: break
    return models


def save_image(image, savefile, modelname, prompt, nprompt, height=0, width=0, steps=0, cfg=0, seed=-1):
    from PIL import Image, PngImagePlugin
    import json
    try:
        metadata = {"prompt": prompt, "negative_prompt": nprompt, "Model": {"Model": modelname.split("/")[-1]}}
        if steps > 0: metadata["num_inference_steps"] = steps
        if cfg > 0: metadata["guidance_scale"] = cfg
        if seed != -1: metadata["seed"] = seed
        if width > 0 and height > 0: metadata["resolution"] = f"{width} x {height}"
        metadata_str = json.dumps(metadata)
        info = PngImagePlugin.PngInfo()
        info.add_text("metadata", metadata_str)
        image.save(savefile, "PNG", pnginfo=info)
        return str(Path(savefile).resolve())
    except Exception as e:
        print(f"Failed to save image file: {e}")
        raise Exception(f"Failed to save image file:") from e


def randomize_seed():
    from random import seed, randint
    MAX_SEED = 2**32-1
    seed()
    rseed = randint(0, MAX_SEED)
    return rseed