JoPmt commited on
Commit
5e77042
·
verified ·
1 Parent(s): 2fc919d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -0
app.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch, os, gc, random
2
+ import gradio as gr
3
+ from PIL import Image
4
+ from diffusers.utils import load_image
5
+ from accelerate import Accelerator
6
+ from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
7
+ accelerator = Accelerator(cpu=True)
8
+
9
+ pipe = accelerator.prepare(StableDiffusionXLPipeline.from_pretrained("imagepipeline/Zavy-Chroma-XL-v3", torch_dtype=torch.bfloat16, use_safetensors=True, variant=None, safety_checker=False))
10
+ pipe.scheduler = accelerator.prepare(EulerDiscreteScheduler.from_config(pipe.scheduler.config))
11
+ ##pipe.unet.to(memory_format=torch.channels_last)
12
+ pipe.to("cpu")
13
+ apol=[]
14
+ def plex(prompt,neg_prompt,stips,nut):
15
+ apol=[]
16
+ if nut == 0:
17
+ nm = random.randint(1, 2147483616)
18
+ while nm % 32 != 0:
19
+ nm = random.randint(1, 2147483616)
20
+ else:
21
+ nm=nut
22
+ generator = torch.Generator(device="cpu").manual_seed(nm)
23
+ image = pipe(prompt=prompt, negative_prompt=neg_prompt, denoising_end=1.0,num_inference_steps=stips, output_type="pil",generator=generator)
24
+ for i, imge in enumerate(image["images"]):
25
+ apol.append(imge)
26
+ return apol
27
+
28
+ iface = gr.Interface(fn=plex, inputs=[gr.Textbox(label="prompt"),gr.Textbox(label="negative prompt",value="ugly, blurry, poor quality"), gr.Slider(label="num inference steps", minimum=1, step=1, maximum=10, value=6),gr.Slider(label="manual seed (leave 0 for random)", minimum=0,step=32,maximum=2147483616,value=0)], outputs=gr.Gallery(label="out", columns=1),description="Running on cpu, very slow! by JoPmt.")
29
+ iface.queue(max_size=1,api_open=False)
30
+ iface.launch(max_threads=1)