JoPmt's picture
Update app.py
d63a259 verified
raw
history blame
1.58 kB
import torch, os, gc, random
import gradio as gr
from PIL import Image
from diffusers.utils import load_image
from accelerate import Accelerator
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
accelerator = Accelerator(cpu=True)
pipe = accelerator.prepare(StableDiffusionXLPipeline.from_pretrained("imagepipeline/Zavy-Chroma-XL-v3", torch_dtype=torch.bfloat16, use_safetensors=True, variant="fp16", safety_checker=None))
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.unet.to(memory_format=torch.channels_last)
pipe.to("cpu")
apol=[]
def plex(prompt,neg_prompt,stips,nut):
apol=[]
if nut == 0:
nm = random.randint(1, 2147483616)
while nm % 32 != 0:
nm = random.randint(1, 2147483616)
else:
nm=nut
generator = torch.Generator(device="cpu").manual_seed(nm)
image = pipe(prompt=prompt, negative_prompt=neg_prompt, denoising_end=1.0,num_inference_steps=stips, output_type="pil",generator=generator)
for i, imge in enumerate(image["images"]):
apol.append(imge)
return apol
iface = gr.Interface(fn=plex, inputs=[gr.Textbox(label="prompt"),gr.Textbox(label="negative prompt",value="ugly, blurry, poor quality"), gr.Slider(label="num inference steps", minimum=1, step=1, maximum=10, value=6),gr.Slider(label="manual seed (leave 0 for random)", minimum=0,step=32,maximum=2147483616,value=0)], outputs=gr.Gallery(label="out", columns=1),description="Running on cpu, very slow! by JoPmt.")
iface.queue(max_size=1,api_open=False)
iface.launch(max_threads=1)