Spaces:
Sleeping
Sleeping
import torch, os, gc, random | |
import gradio as gr | |
from PIL import Image | |
from diffusers.utils import load_image | |
from accelerate import Accelerator | |
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler | |
accelerator = Accelerator(cpu=True) | |
pipe = accelerator.prepare(StableDiffusionXLPipeline.from_pretrained("imagepipeline/Zavy-Chroma-XL-v3", torch_dtype=torch.bfloat16, use_safetensors=True, variant="fp16", safety_checker=None)) | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.unet.to(memory_format=torch.channels_last) | |
pipe.to("cpu") | |
apol=[] | |
def plex(prompt,neg_prompt,stips,nut): | |
apol=[] | |
if nut == 0: | |
nm = random.randint(1, 2147483616) | |
while nm % 32 != 0: | |
nm = random.randint(1, 2147483616) | |
else: | |
nm=nut | |
generator = torch.Generator(device="cpu").manual_seed(nm) | |
image = pipe(prompt=prompt, negative_prompt=neg_prompt, denoising_end=1.0,num_inference_steps=stips, output_type="pil",generator=generator) | |
for i, imge in enumerate(image["images"]): | |
apol.append(imge) | |
return apol | |
iface = gr.Interface(fn=plex, inputs=[gr.Textbox(label="prompt"),gr.Textbox(label="negative prompt",value="ugly, blurry, poor quality"), gr.Slider(label="num inference steps", minimum=1, step=1, maximum=10, value=6),gr.Slider(label="manual seed (leave 0 for random)", minimum=0,step=32,maximum=2147483616,value=0)], outputs=gr.Gallery(label="out", columns=1),description="Running on cpu, very slow! by JoPmt.") | |
iface.queue(max_size=1,api_open=False) | |
iface.launch(max_threads=1) |