|
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, StableDiffusionPipeline |
|
import torch |
|
import cv2 |
|
import numpy as np |
|
from transformers import pipeline |
|
import gradio as gr |
|
from PIL import Image |
|
from diffusers.utils import load_image |
|
import os, random, gc, re, json, time, shutil, glob |
|
import PIL.Image |
|
import tqdm |
|
from controlnet_aux import OpenposeDetector |
|
from accelerate import Accelerator |
|
from huggingface_hub import HfApi, list_models, InferenceClient, ModelCard, RepoCard, upload_folder, hf_hub_download, HfFileSystem |
|
HfApi=HfApi() |
|
HF_TOKEN=os.getenv("HF_TOKEN") |
|
HF_HUB_DISABLE_TELEMETRY=1 |
|
DO_NOT_TRACK=1 |
|
HF_HUB_ENABLE_HF_TRANSFER=0 |
|
accelerator = Accelerator(cpu=True) |
|
InferenceClient=InferenceClient() |
|
|
|
models =[ |
|
"runwayml/stable-diffusion-v1-5", |
|
"prompthero/openjourney-v4", |
|
"CompVis/stable-diffusion-v1-4", |
|
"stabilityai/stable-diffusion-2-1", |
|
"stablediffusionapi/edge-of-realism", |
|
"MirageML/fantasy-scene", |
|
"wavymulder/lomo-diffusion", |
|
"sd-dreambooth-library/fashion", |
|
"DucHaiten/DucHaitenDreamWorld", |
|
"VegaKH/Ultraskin", |
|
"kandinsky-community/kandinsky-2-1", |
|
"MirageML/lowpoly-cyberpunk", |
|
"thehive/everyjourney-sdxl-0.9-finetuned", |
|
"plasmo/woolitize-768sd1-5", |
|
"plasmo/food-crit", |
|
"johnslegers/epic-diffusion-v1.1", |
|
"Fictiverse/ElRisitas", |
|
"robotjung/SemiRealMix", |
|
"herpritts/FFXIV-Style", |
|
"prompthero/linkedin-diffusion", |
|
"RayHell/popupBook-diffusion", |
|
"MirageML/lowpoly-world", |
|
"deadman44/SD_Photoreal_Merged_Models", |
|
"johnslegers/epic-diffusion", |
|
"tilake/China-Chic-illustration", |
|
"wavymulder/modelshoot", |
|
"prompthero/openjourney-lora", |
|
"Fictiverse/Stable_Diffusion_VoxelArt_Model", |
|
"darkstorm2150/Protogen_v2.2_Official_Release", |
|
"hassanblend/HassanBlend1.5.1.2", |
|
"hassanblend/hassanblend1.4", |
|
"nitrosocke/redshift-diffusion", |
|
"prompthero/openjourney-v2", |
|
"nitrosocke/Arcane-Diffusion", |
|
"Lykon/DreamShaper", |
|
"wavymulder/Analog-Diffusion", |
|
"nitrosocke/mo-di-diffusion", |
|
"dreamlike-art/dreamlike-diffusion-1.0", |
|
"dreamlike-art/dreamlike-photoreal-2.0", |
|
"digiplay/RealismEngine_v1", |
|
"digiplay/AIGEN_v1.4_diffusers", |
|
"stablediffusionapi/dreamshaper-v6", |
|
"p1atdev/liminal-space-diffusion", |
|
"nadanainone/gigaschizonegs", |
|
"lckidwell/album-cover-style", |
|
"axolotron/ice-cream-animals", |
|
"perion/ai-avatar", |
|
"digiplay/GhostMix", |
|
"ThePioneer/MISA", |
|
"TheLastBen/froggy-style-v21-768", |
|
"FloydianSound/Nixeu_Diffusion_v1-5", |
|
"kakaobrain/karlo-v1-alpha-image-variations", |
|
"digiplay/PotoPhotoRealism_v1", |
|
"ConsistentFactor/Aurora-By_Consistent_Factor", |
|
"rim0/quadruped_mechas", |
|
"Akumetsu971/SD_Samurai_Anime_Model", |
|
"Bojaxxx/Fantastic-Mr-Fox-Diffusion", |
|
"sd-dreambooth-library/original-character-cyclps", |
|
] |
|
loris=[] |
|
apol=[] |
|
|
|
def smdls(models): |
|
models=models |
|
mtlst=HfApi.list_models(filter="diffusers:StableDiffusionPipeline",limit=500,full=True,) |
|
if mtlst: |
|
for nea in mtlst: |
|
vmh=""+str(nea.id)+"" |
|
models.append(vmh) |
|
return models |
|
|
|
def sldls(loris): |
|
loris=loris |
|
ltlst=HfApi.list_models(filter="stable-diffusion",search="lora",limit=500,full=True,) |
|
if ltlst: |
|
for noa in ltlst: |
|
lmh=""+str(noa.id)+"" |
|
loris.append(lmh) |
|
return loris |
|
|
|
def chdr(apol,prompt,modil,los,stips,fnamo,gaul): |
|
try: |
|
type="SD_controlnet" |
|
tre='./tmpo/'+fnamo+'.json' |
|
tra='./tmpo/'+fnamo+'_0.png' |
|
trm='./tmpo/'+fnamo+'_1.png' |
|
trv='./tmpo/'+fnamo+'_pose.png' |
|
trh='./tmpo/'+fnamo+'_canny.png' |
|
trg='./tmpo/'+fnamo+'_cann_im.png' |
|
trq='./tmpo/'+fnamo+'_tilage.png' |
|
flng=["yssup", "sllab", "stsaerb", "sinep", "selppin", "ssa", "tnuc", "mub", "kcoc", "kcid", "anigav", "dekan", "edun", "slatineg", "xes", "nrop", "stit", "ttub", "bojwolb", "noitartenep", "kcuf", "kcus", "kcil", "elttil", "gnuoy", "thgit", "lrig", "etitep", "dlihc", "yxes"] |
|
flng=[itm[::-1] for itm in flng] |
|
ptn = r"\b" + r"\b|\b".join(flng) + r"\b" |
|
if re.search(ptn, prompt, re.IGNORECASE): |
|
print("onon buddy") |
|
else: |
|
dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type} |
|
with open(tre, 'w') as f: |
|
json.dump(dobj, f) |
|
HfApi.upload_folder(repo_id="JoPmt/hf_community_images",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN) |
|
dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type,'haed':gaul,} |
|
try: |
|
for pxn in glob.glob('./tmpo/*.png'): |
|
os.remove(pxn) |
|
except: |
|
print("lou") |
|
with open(tre, 'w') as f: |
|
json.dump(dobj, f) |
|
HfApi.upload_folder(repo_id="JoPmt/Tst_datast_imgs",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN) |
|
try: |
|
for pgn in glob.glob('./tmpo/*.png'): |
|
os.remove(pgn) |
|
for jgn in glob.glob('./tmpo/*.json'): |
|
os.remove(jgn) |
|
del tre |
|
del tra |
|
del trm |
|
del trv |
|
del trh |
|
del trg |
|
del trq |
|
except: |
|
print("cant") |
|
except: |
|
print("failed to umake obj") |
|
|
|
def crll(dnk): |
|
lix="" |
|
lotr=HfApi.list_files_info(repo_id=""+dnk+"",repo_type="model") |
|
for flre in list(lotr): |
|
fllr=[] |
|
gar=re.match(r'.+(\.pt|\.ckpt|\.bin|\.safetensors)$', flre.path) |
|
yir=re.search(r'[^/]+$', flre.path) |
|
if gar: |
|
fllr.append(""+str(yir.group(0))+"") |
|
lix=""+fllr[-1]+"" |
|
else: |
|
lix="" |
|
return lix |
|
|
|
def plax(gaul,req: gr.Request): |
|
gaul=str(req.headers) |
|
return gaul |
|
|
|
def plex(prompt,mput,neg_prompt,modil,stips,scaly,csal,csbl,nut,wei,hei,los,loca,gaul,progress=gr.Progress(track_tqdm=True)): |
|
gc.collect() |
|
adi="" |
|
ldi="" |
|
|
|
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") |
|
controlnet = [ |
|
ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float32), |
|
ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float32), |
|
] |
|
try: |
|
crda=ModelCard.load(""+modil+"") |
|
card=ModelCard.load(""+modil+"").data.to_dict().get("instance_prompt") |
|
cerd=ModelCard.load(""+modil+"").data.to_dict().get("custom_prompt") |
|
cird=ModelCard.load(""+modil+"").data.to_dict().get("lora_prompt") |
|
mtch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*(.*?)\s*(?=to trigger)', crda.text, re.IGNORECASE) |
|
moch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*([^.]*)', crda.text, re.IGNORECASE) |
|
if moch: |
|
adi+=""+str(moch.group(1))+", " |
|
else: |
|
print("no floff trigger") |
|
if mtch: |
|
adi+=""+str(mtch.group(1))+", " |
|
else: |
|
print("no fluff trigger") |
|
if card: |
|
adi+=""+str(card)+", " |
|
else: |
|
print("no instance") |
|
if cerd: |
|
adi+=""+str(cerd)+", " |
|
else: |
|
print("no custom") |
|
if cird: |
|
adi+=""+str(cird)+", " |
|
else: |
|
print("no lora") |
|
except: |
|
print("no card") |
|
try: |
|
pope = accelerator.prepare(StableDiffusionPipeline.from_pretrained(""+modil+"", use_safetensors=False,torch_dtype=torch.float32, safety_checker=None)) |
|
pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(""+modil+"", use_safetensors=False,controlnet=controlnet,torch_dtype=torch.float32,safety_checker=None)) |
|
except: |
|
gc.collect() |
|
pope = accelerator.prepare(StableDiffusionPipeline.from_pretrained(""+modil+"", use_safetensors=True,torch_dtype=torch.float32, safety_checker=None)) |
|
pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(""+modil+"", use_safetensors=True,controlnet=controlnet,torch_dtype=torch.float32,safety_checker=None)) |
|
if los: |
|
try: |
|
lrda=ModelCard.load(""+los+"") |
|
lard=ModelCard.load(""+los+"").data.to_dict().get("instance_prompt") |
|
lerd=ModelCard.load(""+los+"").data.to_dict().get("custom_prompt") |
|
lird=ModelCard.load(""+los+"").data.to_dict().get("stable-diffusion") |
|
ltch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*(.*?)\s*(?=to trigger)', lrda.text, re.IGNORECASE) |
|
loch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*([^.]*)', lrda.text, re.IGNORECASE) |
|
if loch and lird: |
|
ldi+=""+str(loch.group(1))+", " |
|
else: |
|
print("no lloff trigger") |
|
if ltch and lird: |
|
ldi+=""+str(ltch.group(1))+", " |
|
else: |
|
print("no lluff trigger") |
|
if lard and lird: |
|
ldi+=""+str(lard)+", " |
|
else: |
|
print("no instance") |
|
ldi+="" |
|
if lerd and lird: |
|
ldi+=""+str(lerd)+", " |
|
else: |
|
print("no custom") |
|
ldi+="" |
|
except: |
|
print("no trigger") |
|
try: |
|
pope.load_lora_weights(""+los+"", weight_name=""+str(crll(los))+"",) |
|
pope.fuse_lora(fuse_unet=True,fuse_text_encoder=False) |
|
except: |
|
print("no can do") |
|
else: |
|
los="" |
|
pope.unet.to(memory_format=torch.channels_last) |
|
pope = accelerator.prepare(pope.to("cpu")) |
|
pipe.unet.to(memory_format=torch.channels_last) |
|
pipe = accelerator.prepare(pipe.to("cpu")) |
|
gc.collect() |
|
apol=[] |
|
height=hei |
|
width=wei |
|
prompt=""+str(adi)+""+str(ldi)+""+prompt+"" |
|
negative_prompt=""+neg_prompt+"" |
|
lora_scale=loca |
|
if nut == 0: |
|
nm = random.randint(1, 2147483616) |
|
while nm % 32 != 0: |
|
nm = random.randint(1, 2147483616) |
|
else: |
|
nm=nut |
|
generator = torch.Generator(device="cpu").manual_seed(nm) |
|
tilage = pope(prompt,num_inference_steps=5,height=height,width=width,generator=generator,cross_attention_kwargs={"scale": lora_scale}).images[0] |
|
cannyimage = np.array(tilage) |
|
low_threshold = 100 |
|
high_threshold = 200 |
|
fnamo=""+str(int(time.time()))+"" |
|
cannyimage = cv2.Canny(cannyimage, low_threshold, high_threshold) |
|
cammyimage=Image.fromarray(cannyimage).save('./tmpo/'+fnamo+'_canny.png', 'PNG') |
|
zero_start = cannyimage.shape[1] // 4 |
|
zero_end = zero_start + cannyimage.shape[1] // 2 |
|
cannyimage[:, zero_start:zero_end] = 0 |
|
cannyimage = cannyimage[:, :, None] |
|
cannyimage = np.concatenate([cannyimage, cannyimage, cannyimage], axis=2) |
|
canny_image = Image.fromarray(cannyimage) |
|
pose_image = load_image(mput).resize((512, 512)) |
|
openpose_image = openpose(pose_image) |
|
images = [openpose_image, canny_image] |
|
omage=pipe([prompt]*2,images,num_inference_steps=stips,generator=generator,negative_prompt=[neg_prompt]*2,controlnet_conditioning_scale=[csal, csbl]) |
|
for i, imge in enumerate(omage["images"]): |
|
apol.append(imge) |
|
imge.save('./tmpo/'+fnamo+'_'+str(i)+'.png', 'PNG') |
|
apol.append(openpose_image) |
|
apol.append(cammyimage) |
|
apol.append(canny_image) |
|
apol.append(tilage) |
|
openpose_image.save('./tmpo/'+fnamo+'_pose.png', 'PNG') |
|
canny_image.save('./tmpo/'+fnamo+'_cann_im.png', 'PNG') |
|
tilage.save('./tmpo/'+fnamo+'_tilage.png', 'PNG') |
|
chdr(apol,prompt,modil,los,stips,fnamo,gaul) |
|
return apol |
|
|
|
def aip(ill,api_name="/run"): |
|
return |
|
def pit(ill,api_name="/predict"): |
|
return |
|
|
|
with gr.Blocks(theme=random.choice([gr.themes.Monochrome(),gr.themes.Base.from_hub("gradio/seafoam"),gr.themes.Base.from_hub("freddyaboulton/dracula_revamped"),gr.themes.Glass(),gr.themes.Base(),]),analytics_enabled=False) as iface: |
|
|
|
out=gr.Gallery(label="Generated Output Image", columns=1) |
|
inut=gr.Textbox(label="Prompt") |
|
mput=gr.Image(type="filepath") |
|
gaul=gr.Textbox(visible=False) |
|
inot=gr.Dropdown(choices=smdls(models),value=random.choice(models), type="value") |
|
btn=gr.Button("GENERATE") |
|
with gr.Accordion("Advanced Settings", open=False): |
|
inlt=gr.Dropdown(choices=sldls(loris),value=None, type="value") |
|
inet=gr.Textbox(label="Negative_prompt", value="low quality, bad quality,") |
|
inyt=gr.Slider(label="Num inference steps",minimum=1,step=1,maximum=30,value=20) |
|
inat=gr.Slider(label="Guidance_scale",minimum=1,step=1,maximum=20,value=7) |
|
csal=gr.Slider(label="condition_scale_canny", value=0.5, minimum=0.1, step=0.1, maximum=1) |
|
csbl=gr.Slider(label="condition_scale_pose", value=0.5, minimum=0.1, step=0.1, maximum=1) |
|
loca=gr.Slider(label="Lora scale",minimum=0.1,step=0.1,maximum=0.9,value=0.5) |
|
indt=gr.Slider(label="Manual seed (leave 0 for random)",minimum=0,step=32,maximum=2147483616,value=0) |
|
inwt=gr.Slider(label="Width",minimum=512,step=32,maximum=1024,value=512) |
|
inht=gr.Slider(label="Height",minimum=512,step=32,maximum=1024,value=512) |
|
|
|
btn.click(fn=plax,inputs=gaul,outputs=gaul).then(fn=plex, outputs=[out], inputs=[inut,mput,inet,inot,inyt,inat,csal,csbl,indt,inwt,inht,inlt,loca,gaul]) |
|
|
|
iface.queue(max_size=1,api_open=False) |
|
iface.launch(max_threads=20,inline=False,show_api=False) |