Spaces:
Sleeping
Sleeping
import streamlit as st | |
import open_clip | |
import torch | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
import time | |
import numpy as np | |
from ultralytics import YOLO | |
import chromadb | |
from transformers import pipeline | |
from sklearn.metrics.pairwise import cosine_similarity | |
# Load segmentation model | |
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes") | |
# Load CLIP model and tokenizer | |
def load_clip_model(): | |
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP') | |
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP') | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
return model, preprocess_val, tokenizer, device | |
clip_model, preprocess_val, tokenizer, device = load_clip_model() | |
# Load YOLOv8 model | |
#@st.cache_resource | |
#def load_yolo_model(): | |
# return YOLO("./best.pt") | |
#yolo_model = load_yolo_model() | |
# Load chromaDB | |
client = chromadb.PersistentClient(path="./clothesDB_202410") | |
#collection = client.get_collection(name="clothes_items_ver3") | |
collection = client.get_collection(name="clothes") | |
# Helper functions | |
def load_image_from_url(url, max_retries=3): | |
for attempt in range(max_retries): | |
try: | |
response = requests.get(url, timeout=10) | |
response.raise_for_status() | |
img = Image.open(BytesIO(response.content)).convert('RGB') | |
return img | |
except (requests.RequestException, Image.UnidentifiedImageError) as e: | |
if attempt < max_retries - 1: | |
time.sleep(1) | |
else: | |
return None | |
def get_image_embedding(image): | |
image_tensor = preprocess_val(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
image_features = clip_model.encode_image(image_tensor) | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
return image_features.cpu().numpy() | |
def segment_clothing(img, clothes=["Hat", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Scarf"]): | |
# Segment image | |
segments = segmenter(img) | |
# Create list of masks | |
mask_list = [] | |
detected_categories = [] | |
for s in segments: | |
if s['label'] in clothes: | |
mask_list.append(s['mask']) | |
detected_categories.append(s['label']) # Store detected categories | |
# Paste all masks on top of each other | |
final_mask = np.zeros_like(np.array(img)[:, :, 0]) # Initialize mask | |
for mask in mask_list: | |
current_mask = np.array(mask) | |
final_mask = np.maximum(final_mask, current_mask) # Use maximum to combine masks | |
# Convert final mask from np array to PIL image | |
final_mask = Image.fromarray(final_mask.astype(np.uint8) * 255) # Convert to binary mask | |
# Apply mask to original image | |
img_with_alpha = img.convert("RGBA") # Ensure the image has an alpha channel | |
img_with_alpha.putalpha(final_mask) | |
return img_with_alpha.convert("RGB"), final_mask, detected_categories # Return detected categories | |
def find_similar_images(query_embedding, collection, top_k=5): | |
try: | |
# ๋ชจ๋ ์๋ฒ ๋ฉ์ ๊ฐ์ ธ์ด | |
all_embeddings = collection.get(include=['embeddings', 'metadatas'])['embeddings'] | |
database_embeddings = np.array(all_embeddings) | |
# ์ ์ฌ๋ ๊ณ์ฐ | |
similarities = cosine_similarity(database_embeddings, query_embedding.reshape(1, -1)).squeeze() | |
top_indices = np.argsort(similarities)[::-1][:top_k] | |
# ๋ฉํ๋ฐ์ดํฐ ๊ฐ์ ธ์ด | |
all_data = collection.get(include=['metadatas'])['metadatas'] | |
top_metadatas = [all_data[idx] for idx in top_indices] | |
results = [] | |
for idx, metadata in enumerate(top_metadatas): | |
image_urls = metadata['image_url'].split(',') | |
representative_image_url = image_urls[0] if image_urls else None | |
results.append({ | |
'info': metadata, | |
'similarity': similarities[top_indices[idx]], | |
'image_url': representative_image_url | |
}) | |
return results | |
except Exception as e: | |
st.error(f"Error during finding similar images: {str(e)}") | |
return [] | |
# ์ธ์ ์ํ ์ด๊ธฐํ | |
if 'step' not in st.session_state: | |
st.session_state.step = 'input' | |
if 'query_image_url' not in st.session_state: | |
st.session_state.query_image_url = '' | |
if 'detections' not in st.session_state: | |
st.session_state.detections = [] | |
if 'segmented_image' not in st.session_state: # Add segmented_image to session state | |
st.session_state.segmented_image = None | |
if 'selected_category' not in st.session_state: | |
st.session_state.selected_category = None | |
# Streamlit app | |
st.title("Advanced Fashion Search App") | |
# ๋จ๊ณ๋ณ ์ฒ๋ฆฌ | |
if st.session_state.step == 'input': | |
st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url) | |
if st.button("Detect Clothing"): | |
if st.session_state.query_image_url: | |
query_image = load_image_from_url(st.session_state.query_image_url) | |
if query_image is not None: | |
st.session_state.query_image = query_image | |
# Perform segmentation | |
segmented_image, final_mask, detected_categories = segment_clothing(query_image) | |
st.session_state.segmented_image = segmented_image # Store segmented image in session state | |
st.session_state.detections = detected_categories # Store detected categories | |
st.image(segmented_image, caption="Segmented Image", use_column_width=True) | |
if st.session_state.detections: | |
st.session_state.step = 'select_category' | |
else: | |
st.warning("No clothing items detected in the image.") | |
else: | |
st.error("Failed to load the image. Please try another URL.") | |
else: | |
st.warning("Please enter an image URL.") | |
elif st.session_state.step == 'select_category': | |
st.image(st.session_state.segmented_image, caption="Segmented Image with Detected Categories", use_column_width=True) | |
st.subheader("Detected Clothing Categories:") | |
if st.session_state.detections: | |
selected_category = st.selectbox("Select a category to search:", st.session_state.detections) | |
if st.button("Search Similar Items"): | |
st.session_state.selected_category = selected_category | |
st.session_state.step = 'show_results' | |
else: | |
st.warning("No categories detected.") | |
elif st.session_state.step == 'show_results': | |
original_image = st.session_state.query_image.convert("RGB") # Convert to RGB before displaying | |
st.image(original_image, caption="Original Image", use_column_width=True) | |
# Get the embedding of the segmented image | |
query_embedding = get_image_embedding(st.session_state.segmented_image) # Use the segmented image from session state | |
similar_images = find_similar_images(query_embedding, collection) | |
st.subheader("Similar Items:") | |
for img in similar_images: | |
col1, col2 = st.columns(2) | |
with col1: | |
st.image(img['image_url'], use_column_width=True) | |
with col2: | |
st.write(f"Name: {img['info']['name']}") | |
st.write(f"Brand: {img['info']['brand']}") | |
category = img['info'].get('category') | |
if category: | |
st.write(f"Category: {category}") | |
st.write(f"Price: {img['info']['price']}") | |
st.write(f"Discount: {img['info']['discount']}%") | |
st.write(f"Similarity: {img['similarity']:.2f}") | |
if st.button("Start New Search"): | |
st.session_state.step = 'input' | |
st.session_state.query_image_url = '' | |
st.session_state.detections = [] | |
st.session_state.segmented_image = None # Reset segmented_image |